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Abstract: The method that is proposed in the present paper is a special case of squared
Msplit estimation. It concerns a direct estimation of the shift between the parameters of
the functional models of geodetic observations. The shift in question may result from, for
example, deformation of a geodetic network or other non-random disturbances that may
influence coordinates of the network points. The paper also presents the example where
such shift is identified with a phase displacement of a wave. The shift is estimated on the
basis of wave observations and without any knowledge where such displacement took place.
The estimates of the shift that are proposed in the paper are named Shift-Msplit estimators.

Keywords: geodetic adjustment, Msplit estimation, Shift-Msplit estimation

1. Introduction

Wiśniewski (2009a, 2009b, 2009c) proposed a new method of estimation that
is generally called Msplit estimation. The theoretical basis of the method, later exten-
ded to q-dimensional case in (Wiśniewski, 2010), is the assumption that a measure-
ment result can be a realization of either of two random variables Yα or Yβ with the
expected values E{Yα} and E{Yβ}, respectively. Thus, the observation set
Ω = {yi: i = 1, 2, . . . , n} is a disordered mixture of the elements assigned to the
random variables Yα or Yβ in an unknown way. For that reason, each observation yi
may have either of two competitive expected values Eα{yi} = E{Yα} or Eβ{yi} = E{Yβ}.
Msplit estimation, at this stage of its development, assumes that the expected values in
question are described by the following models:

Eα{yi} = aiXα (1)

Eβ{yi} = aiXβ (2)

where Xα and Xβ are two different parameter vectors, and ai is the ith row of a known
design matrix A = [aT

1 , · · · , aT
n ]T ∈ Rn,r . Thus it is assumed that models presented

above are linear or at least result from linearization of other nonlinear models. In the
estimation process, the parameters compete with each other for each observation that
belongs to the set Ω. Such competition is based on the global split potential, which
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was proposed in (Wiśniewski, 2009a), and the objective function of the optimization
problem that follows it.

Now, let the observation set Ω be a mixture of realizations of two random vectors
Yα and Yβ, with the respective expected values E{Yα} and E{Yβ}. The vector of
observations y ∈ Rn, which contains disordered elements of the vectors in question,
may be assigned to either of two competitive vectors of expected values

Eα{yi} = AXα (3)

Eβ{yi} = AXβ (4)

From the practical point of view, one is often interested in the difference ∆X between
the parameters Xα and Xβ. For example, if we analyze deformation of a network,
which was measured twice, at two different epochs (1) and (2), we usually estimate
the difference δX = X(2) – X(1), where X(1) and X(2) are vectors of coordinates of the
network points at these epochs. Estimation of the vector δX, or common estimation
of the parameters X(1) and X(2), by the least-squares method (LS-method) requires a
common functional model of all observations (see, e.g. Chen, 1983; Caspary, 1988;
Singh and Setan, 2001). Such traditional approach is usually good and sufficient, ho-
wever, it may be troublesome if the observation set is affected by gross errors (this
problem was pointed out in (Wiśniewski, 2009a, 2009c). Another problem may result
from random disturbances that are not reflected in statistic and functional models of the
observations. Such disturbances may adversely affect the process of identification and
estimation itself. One can expect this type of random disturbances, which are difficult
to be formally written and described, for example, in deformation analyses based on
GPS measurements. Here, it mainly results from the fact that the random disturbances
vary in time (e.g. Mertikas and Damianidis, 2007).

Estimation of the difference between parameters of the functional models (models
of the expected values) is of greater significance for surveying theory and practice as
well. Such approach is applied, for example, in estimation that is affected by outliers
(e.g. Cross and Price, 1985; Schaffrin and Wang, 1994; Gui et al., 2007; Duchnowski,
2008) or in estimation that considers deterministic errors described by different po-
tential models (e.g. Kubáčkowá and Kubáček, 1991; Wiśniewski, 1985, 2010). Similar
problems may also occur when two observation sets combine or in the case of mixed
pixels in laser scanning (e.g. Lichti et al., 2005; Gordon and Lichti, 2007). In GPS
technique, such approach may be applied to estimate the phase shift of the measurement
wave, which propagation is unexpectedly disturbed (see, e.g. Mubarak and Dempster,
2010; Pavelyev et al., 2010).

Msplit estimators compete with each other for every single observation, thus the
order of observation in the whole set does not matter. The objective function of Msplit
estimation, which is based on the global split potential, allows for the determination of
such Msplit estimates of the parameters Xα and Xβ that are not affected by outliers or
other unexpected random disturbances. These two main properties of Msplit estimates
are also very important in estimation of the shift between parameters of functional
models.
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Creating Msplit estimation of the shift, which can solve the problems mentioned
above or other similar ones, one should note that if the competitive parameters Xα

and Xβ differ from each other then this difference must result from the shift between
sets of realizations of random variables Yα and Yβ. To prove this, let us assume that
the non-random quantity ∆ = Yα – Yβ is a shift between random variables Yα and Yβ
(e.g. Rousseeuw and Verboven, 2002; Duchnowski, 2008, 2009, 2010). Since in Msplit
estimation, the observation yi may be regarded as a realization of either of two random
variable Yα or Yβ, thus the shift between these variables is equal to the following shift:

∀i : ∆ = (yi ∈ Yα) − (yi ∈ Yβ) (5)

Since E{∆} = ∆, ∆ = Yα – Yβ and considering Eq. (5) one can write that

E{∆} = E{Yα} − E{Yβ} = E{yi ∈ Yα} − E{yi ∈ Yβ} = Eα{yi} − Eβ{yi} = ∆ (6)

where Eα{yi} and Eβ{yi} are the competitive expected values of the observation yi.
Similarly, one can write down the following relationship concerning vectors Yα and
Yβ

∆ = E{Yα} − E{Yβ} = Eα{y} − Eβ{y} (7)

By putting the competitive models of the expected values (3) and (4) into the above
equation, one obtains (∆X = Xβ – Xα is the shift between the parameter vectors)

∆ = AXα − AXβ = −A ∆X (8)

The main objective of the present paper is to present the method of direct estimation
of the shift ∆X by applying the squared Msplit estimation. The method proposed will be
called Shift-Msplit estimation, and its theoretical foundations are presented in the second
section of the paper. That section focuses on the dual optimization problem and its
solution that refers to the traditional systems of the normal equations of the least squares
method. The duality of the optimization problem is the basis for an iterative process
that is effective and easy to be carried out. The section 3 presents numerical examples
of how to compute Shift-Msplit estimates. The first example (section 3.1) presents
estimation of the phase shift based on wave observations. In the second example
(section 3.2), the estimated shift is regarded as the change of the point heights in the
levelling network that is measured at two different epochs. Thus, it is assumed that the
deformation vector δX is equal to the shift ∆X of the point heights.

2. Theoretical foundation

Consider Msplit estimation that concerns the competitive expected values Eα{y} = AXα

and Eβ{y} = AXβ of the observation vector y = [y1, · · · , yn]T. In this case, the objective
function in respect of the parameters Xα and Xβ has the following form (Wiśniewski,
2009a, 2009b):

Φ(y; Xα,Xβ) =

n∑

i=1

ρα(yi;Xα)ρβ(yi;Xβ) (9)
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where ρα and ρβ are arbitrary, at least twice differentiable convex functions. Note
that in the classic M-estimation ΦM(y;X) =

∑n

i=1
ρ(yi;X). The cited papers focus on

the squared Msplit estimation where ρα(yi;Xα) = v2
i;α and ρβ(yi;Xβ) = v2

i;β. Here, vi;α
and vi;β are competitive random errors of the observation yi. These quantities can be
described by the following functional models:

vi;α = yi − Eα{y} = yi − aiXα
i=1, ..., n→ vα = y − AXα (10)

vi;β = yi − Eβ{y} = yi − aiXβ
i=1, ..., n→ vβ = y − AXβ (11)

Given these models, the objective function of Eq. (9) can be written as

Φ(y;Xα,Xβ) =

n∑

i=1

(yi − aiXα)2(yi − aiXβ)2 =

n∑

i=1

v2
i;αv

2
i;β (12)

On the one hand squared Msplit estimation is a special case of Msplit estimation, but
on the other hand it is a kind of development of the classical LS-method with the
objective function ΦLS(y; X) =

∑n

i=1
v2
i . It follows that squared Msplit estimates ha-

ve certain interesting properties and are rather easy to be calculated, which was de-
scribed and illustrated with numerical tests presented in (Wiśniewski, 2009a, 2009c).
The optimization problem

min
Xα ,Xβ

Φ(y;Xα,Xβ) =

n∑

i=1

v2
i;αv

2
i;β

 =

n∑

i=1

(yi − aiX̂α)2(yi − aiX̂β)2 =

n∑

i=1

v̂2
iαv̂

2
iβ (13)

that is solved by applying the models of Eqs. (10) and (11) leads to the competitive
estimates X̂α and X̂β of the parameters Xα and Xβ, respectively. In this case, the
parameter shift ∆X can be estimated indirectly by ∆X̂ = X̂β − X̂α.

A direct estimation of the shift may be very important from the practical point of
view. For example, it might be applied in displacement estimation in a free network or
when reference points are supposed to be unstable. In such cases it would be sometimes
better to estimate shift of the coordinates than the coordinates themselves. To determine
the method of the estimation in question, one should note that a constant shift between
elements of the set Ω, which is equal to the shift of the expected values Eα{y} and
Eβ{y}, can be associated with the difference ∆v between the errors vi;α and vi;β, i.e.

∆ = Eα{y} − Eβ{y} = vi;β − vi;α = ∆v (14)

This relationship can also be written for the error vectors vα and vβ. Thus

∆ = Eα{y} − Eβ{y} = vβ − vα = ∆v (15)

Since vα = y – AXα and vβ = y – AXβ, then

∆ = ∆v = vβ − vα = −A(Xβ − Xα) = −A∆X (16)



Shift-Msplit estimation 83

It follows that the original optimization problem of Msplit estimation in Eq. (13),
which concerns competitive parameters Xα and Xβ, can be replaced with the following
equivalent problem

min
∆X

Φ(y; ∆X) =

n∑

i=1

v2
i;αv

2
i;β

 (17)

Considering the expression of Eq. (16), one can write that

vα = vβ + A∆X (18)

vβ = vα − A∆X (19)

hence, for i = 1, 2, . . . , n
viα = viβ + ai∆X (20)

viβ = viα − ai∆X (21)

Thus, the objective function from Eq. (17) can be changed into the following form:

Φ(y; ∆X) =

n∑

i=1

v2
i;α(vi;α − ai∆X︸       ︷︷       ︸

vi;β

)2 =

n∑

i=1

(vi;β + ai∆X︸      ︷︷      ︸
vi;α

)2v2
i;β (22)

which is the basis for the following optimization problem:

min
∆X

Φ(y; ∆X) = Φ(y; ∆̂X;split) (23)

The estimator ∆̂X;split that solves this optimization problem is a direct Msplit estimate
of the shift ∆X. It is obtained by applying the conventional condition

g(∆X) =
∂

∂∆X
Φ(y; ∆X)

∣∣∣∣∣
∆X=∆̂X;split

= 0 (24)

The duality of the objective function of Eq. (22) enables to determine the gradient
g(∆X) in two following equivalent ways:

g(∆X) =
∂

∂∆X
Φ(y; ∆X) =

∂vβ
∂∆X

∂

∂vβ


n∑

i=1

v2
i;α(vi;α − ai∆X︸       ︷︷       ︸

vi,β

)2

 (25)

g(∆X) =
∂

∂∆X
Φ(y; ∆X) =

∂vα
∂∆X

∂

∂vα


n∑

i=1

(vi;β + ai∆X︸      ︷︷      ︸
vi,α

)2v2
i;β

 (26)

These two variants of the gradient g(∆X) can also be presented in the following forms:

g(∆X) = −2ATw(vα)(vα − A∆X) (27)
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g(∆X) = 2ATw(vβ)(vβ + A∆X) (28)

where w(vα) = diag(v2
1;α, · · · , v2

n;α) and w(vβ) = diag(v2
1;β, · · · , v2

n;β). Given these two
forms of the gradient, the condition of Eq. (24) can be rewritten as

g(∆X)|∆̂X;split
= 0 ⇔


g(∆X)|∆̂X;α

= 0
g(∆X)|∆̂X;β

= 0
(29)

Hence, two equivalent conditions are obtained for the optimality of the problem of
Eq. (23)

ATw(vα)(vα − A∆̂X;α) = 0 (30)

ATw(vβ)(vβ + A∆̂X;β) = 0 (31)

It is worth noting that such necessary conditions apply also to Msplit estimation of
the parameters Xα and Xβ from the competitive functional models of Eqs. (10) and
(11) and objective function of Eq. (12). To prove it, let us compute the gradients
of this objective function related to the competitive parameters Xα and Xβ (see also
Wiśniewski, 2009a)

g(Xβ) =
∂

∂Xβ
Φ(y;Xα,Xβ) = −2ATw(vα)vβ = g(∆X) (32)

g(Xα) =
∂

∂Xα
Φ(y;Xα,Xβ) = −2ATw(vβ)vα = −g(∆X) (33)

Thus, the necessary conditions for solving the optimization problem of Msplit estimation
of the parameters Xα and Xβ have the following forms:

ATw(vα)vβ = 0 (34)

ATw(vβ)vα = 0 (35)

which is clearly consistent with the conditions of Eqs. (30) and (31). Note, that the
necessary conditions from Eqs. (30) and (31) as well as the conditions of Eqs. (34)
and (35) correspond to the necessary conditions of the LS-method with two following
objective functions:

ΦLS(y;Xβ) =

n∑

i=1

v2
i;βw(vi;α) (36)

ΦLS(y; Xα) =

n∑

i=1

v2
i;αw(vi;β) (37)

Here, the quantities w(vi;α) = v2
i;α and w(vi;β) = v2

i;β are clearly regarded as the weights.
The functions of Eqs. (36) and (37) illuminate the source of the properties of squared
Msplit estimates and furthermore they help to organize the computation process of
squared Msplit estimation.
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The elementary transformations of Eqs. (30) and (31) result in two following
systems of normal equations:

N(vα)∆̂X;α − b(vα) = 0 (38)

N(vβ)∆̂X;β + b(vβ) = 0 (39)

where N(v) = ATw(v)A ∈ <r,r , b(v) = ATw(v)v.
Let us assume that rank[N(v)] = r, for v = vα and v = vβ. Then, the explicit

solutions of the system of normal equations (38) and (39), which satisfy the conditions
from Eqs. (29) and (30), are the following estimates:

∆̂X;α = [N(vα)]−1b(vα) = [N(vα)]−1ATw(vα)vα (40)

∆̂X;β = −[N(vβ)]−1b(vβ) = −[N(vβ)]−1ATw(vβ)vβ (41)

Due to the duality of the objective function from Eq. (22), and hence the equivalence
of the normal equations (38) and (39), the estimates that are proposed above must be
equal to each other. The estimates ∆̂X;split = ∆̂X;α = ∆̂X;β will be called Shift-Msplit
estimators.

It is easy to prove that the estimates (40) and (41) actually solve the systems
of normal equations (38) and (39), respectively. On the other hand, they solve the
alternative systems of normal equations too. To prove this, let us first recall that
vα = vβ + A∆X and vβ = vα – A∆X . Thus, when applying the estimate form of
Eq. (40) to Eq. (39), then

N(vβ)∆̂X;α + b(vβ) = N(vβ)[N(vα)]−1b(vα) + b(vβ) =

= N(vβ)[N(vα)]−1ATw(vα)(vβ + A∆X) + ATw(vβ)(vα − A∆X) (42)

In a similar manner and by applying the estimate of Eq. (41) to Eq. (38), one can also
write that

N(vα)∆̂X,β − b(vα) = −N(vα)[N(vβ)]−1b(vβ) − b(vα) =

= −N(vα)[N(vβ)]−1ATw(vβ)(vα − A∆X) − ATw(vα)(vβ + A∆X) (43)

Now by using the conditions of Eqs. (34) and (35) one can finally write down

N(vβ)[N(vα)]−1 ATw(vα)vβ︸       ︷︷       ︸
0

+N(vβ)∆X + ATw(vβ)vα︸       ︷︷       ︸
0

−N(vβ)∆X =

= N(vβ)∆X − N(vβ)∆X = 0 (44)

and similarly
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−N(vα)[N(vβ)]−1 ATw(vβ)vα︸       ︷︷       ︸
0

+N(vα)∆X − ATw(vα)vβ︸       ︷︷       ︸
0

−N(vα)∆X =

= N(vα)∆X − N(vα)∆X = 0 (45)

Let us now consider the way of how to compute Shift-Msplit estimates of Eqs. (40) and
(41). It is obvious that the values of the estimates ∆̂X;α and ∆̂X;β depend on the values
of the vectors vα and vβ, respectively. Thus, Shift-Msplit estimation that leads to the
estimate ∆̂X;split = ∆̂X;α = ∆̂X;β seems to be an iterative process, however, other ways
to solve the optimization problem are also not excluded (e.g. global optimization). Let
us now assume that the value of v j−1

α is known in the next jth iterative step. According
to Eqs. (40) and (19), one can then compute ( j = 1, 2, . . . , m)

∆
j
X;α = [N(v j−1

α )]−1b(v j−1
α ) (46)

v j
β = v j−1

α − A∆
j
X;α (47)

and afterwards (according to Eqs. (41) and (18))

∆
j
X;β = −[N(v j

β)]
−1b(v j

β) (48)

v j
α = v j

β + A∆
j
X;β (49)

The iterative process that is described by Eqs. (36)-(39) is convergent, which results
from earlier presented numerical tests and which is consistent with the theory of squared
Msplit estimation (see, Wiśniewski, 2009a, 2010). Thus, one can write that

lim
j→∞

∆
j
X;α = ∆̂X;α

lim
j→∞

∆
j
X;β = ∆̂X;β

 = ∆̂X;split (50)

and the estimate ∆̂X;split = ∆̂X;α = ∆̂X;β is such quantity for which
∣∣∣∆m

X;β − ∆m
X;α

∣∣∣ < ε,
where ε is the assumed precision of the computations.

The theoretical basis is common for Msplit estimation and Shift-Msplit estimation,
and it is their common link to LS-method. This has not only a formal significance
(for example, in analyzing properties of Shift-Msplit estimation). These relationships
can also be applied, for example, at the beginning of the iterative process. Wisniewski
(2009a, 2009c) proposed to start the iterative process of Msplit estimation from the
LS-estimates, namely X̂LS = (ATA)−1ATy and v̂LS = y−AX̂LS. In the case of Shift-Msplit
estimation, the initial iterative step (step “0”) should of course be supplemented with
the values of ∆0

X;β = −[N(v̂LS)]−1b(v̂LS) and v0
α = v̂LS + A∆0

X;β, which are computed on
the basis of Eqs. (48) and (49).
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3. Examples

Shift-Msplit estimation that is presented in the previous sections can be applied in some
geodetic problems where values of the parameters of the functional model vary, for
example, in time. The present paper focuses especially on the theory of this method.
Thus, the examples presented here show possible applications of Shift-Msplit estimation,
and are not related to details of the measurement theory or real technological conditions
of the problems to which they refer.

3.1. Example 1

Shift-Msplit estimation can be, for example, applied to determine a phase shift
∆ϕ = ϕβ – ϕα between two waves of the following equations:

ỹ(t;ϕα) = y0 + A sin(ω t + ϕα) (51)

ỹ(t;ϕβ) = y0 + A sin(ω t + ϕβ) (52)

where y0 – unknown constant, A – amplitude of the wave, ω – angular frequency,
t – time, ϕ – phase offset. Let us assume that the wave is measured at the time ti,
i = 1, 2, . . . , n, and the result may be related to either of two waves: ỹ(t;ϕα) or ỹ(t;ϕβ).
Thus, the only information about the observation yi is that it belongs to either of two
sets: Uα = {ỹ(ti;ϕα) + vi;α} or Uβ = {ỹ(ti;ϕβ) + vi;β}, where vi is a random error of the
measurement. Hence, there are two following competitive functional models:

yi = ỹα(ti) + vi;α = y0;α + A sin(ω ti + ϕα) + vi;α (53)

yi = ỹβ(ti) + vi;β = y0;β + A sin(ω ti + ϕβ) + vi;β (54)

assigned to each observation yi, i = 1, 2, . . . , n, belonging to the set Ω ≡ Uα ∪ Uβ.
The value y0 is assumed as constant, however, according to the Msplit estimation princi-
ples, there are two competitive values y0;α and y0;β in the models of Eqs. (53) and (54).
In order to simplify the further estimation process (and only for this reason), the func-
tions from Eqs. (51) and (52) are brought to the following linear forms:

ỹ(t, ϕα) = y0 + A sin(ω t) +
dỹ(t, ϕα)

dϕα
ϕα � y0 + A sin(ω t) + cos(ω t)ϕα (55)

ỹ(t, ϕβ) = y0 + A sin(ω t) +
dỹβ(t, ϕβ)

dϕβ
ϕβ � y0 + A sin(ω t) + cos(ω t)ϕβ (56)

Thus, the functional models (53) and (54) can then be written as follows:

vi;α = yi − [y0;α + A sin(ω ti) + cos(ω ti)ϕα]
i=1, ..., n→ vα = l − AXα (57)

vi;β = yi − [y0;β + A sin(ω ti) + cos(ω ti)ϕβ]
i=1, ..., n→ vβ = l − AXβ (58)
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where

A =


1 1 · · · 1

cos(ω t1) cos(ω t2) · · · cos(ω tn)


T

, Xα =


y0;α

ϕα

 , Xβ =


y0;β

ϕβ

 ,

l = [y1 − A sin(ω t1), y2 − A sin(ω t2), · · · , yn − A sin(ω tn)]T

The linear functions, models and also the matrices presented above are valid for small
values of the phase shifts ϕα and ϕβ. However, they were used in the following compu-
tations for different values of ϕα and ϕβ just to show the iterative process of Shift-Msplit
estimation.

In the case at hand, the shift of the parameter vector resulting from the difference
vβ – vα = –A(Xβ – Xα) = –A∆X has the following form:

∆X = Xβ − Xα = [∆y0 , ∆ϕ]
T = [y0;β − y0;α, ϕβ − ϕα]T (59)

where ∆y0 = y0;β − y0;α is the shift of the constant y0, and ∆ϕ = ϕβ – ϕα is the phase
shift.

The wave observations are simulated by applying the following formula:

yi = y0 + A sin(ω ti + ϕ) + vi (60)

and by assuming either of two variants of the phase offset: ϕ = ϕα or ϕ = ϕβ.
Furthermore, observations are simulated for A = 1 and ωti = iπ/8, i = 1, 2, . . . , 16
(y0 remains the same). The observation errors vi are generated under the assumption
that they are Gaussian errors with the mean of 0 and the standard deviation of 0.002.
In order to avoid any influence of the set sizes, the sets Uα and Uβ are simulated as
the sets of the same number of elements. The Shift-Msplit estimates, namely ∆̂y0;split

and ∆̂ϕ;split are compared with the following quantities:

∆ŷ0 = ŷ0;β − ŷ0;α (61)

∆ϕ̂ = ϕ̂β − ϕ̂α (62)

where ŷ0;α, ŷ0;β, ϕ̂α, ϕ̂β are Msplit estimates of y0 and ϕ, respectively.
Let the following vector be a vector of the wave observations:

y = [2.706 2.834 2.995 2.983 2.704 2.555 2.005 1.803 1.289 1.174

0.998 1.023 1.290 1.446 1.997 2.200]T

which is simulated under the assumptions that y0 = 2.000, ϕα = π/16, ϕβ = 2π/16.
Hence, the theoretical phase shift is equal to ∆ϕ = π/16, and the theoretical shift of the
constant y0 is equal to ∆y0 = 0.000. The iterative processes of Msplit estimation and
Shift-Msplit estimation for the assumed vector y are presented in Table 1.
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Table 1. The course of the iterative processes of Msplit and Shift-Msplitestimations of the vector
∆X = [∆y0 , ∆ϕ]

T for assumed values: y0 = 2.000, ∆y0 = 0, ϕα = π/16, ϕβ = 2π/16, ∆ϕ = π/16

Msplit Shift-Msplit

Step
gα(X j−1

α ,X j−1
β )

gβ(X j
α,X

j−1
β )

dX j
α

dX j
β

X j
α

X j
β

∆X j

= X j
β − X j

α

b(v j−1
α )

b(v j−1
β )

∆
j
X;α

∆
j
X;β

LS
32.0020
2.3130

2.0001
0.2891

0β
0.0000
-0.0010

0.0006
0.0246

2.0007
0.3137

0.0006
0.0246

0.0000
-0.0014

0.0006
0.0246

1α
0.0000
0.0029

-0.0010
-0.0477

1.9991
0.2414

0.0000
0.0029

0.0010
0.0477

1β
0.0000
-0.0050

0.0004
0.0718

2.0011
0.3855

0.0020
0.1441

0.0000
-0.0050

0.0017
0.0900

2α
-0.0004
0.0041

0.0019
-0.0370

2.0010
0.2044

0.0000
0.0117

0.0013
0.1410

2β
0.0000
-0.0010

-0.0021
0.0135

1.9990
0.3990

-0.0020
0.1946

0.0000
-0.0090

0.0007
0.1384

3α
-0.0001
0.0001

0.0007
-0.0009

2.0017
0.2036

-0.0004
0.0194

-0.0007
0.1781

3β
0.0000
-0.0000

-0.0002
0.0000

1.9989
0.3990

-0.0028
0.1954

0.0010
-0.0190

-0.0022
0.1942

4α
0.0000
0.0000

0.0000
0.0000

2.0017
0.2036

-0.0014
0.0251

-0.0027
0.1954

4β
0.0000
0.0000

0.0000
0.0000

1.9988
0.3990

-0.0029
0.1954

0.0010
-0.0200

-0.0028
0.1955

5α
0.0000
0.0000

0.0000
0.0000

2.0017
0.2036

-0.0014
0.0251

-0.0029
0.1954

5β
0.0000
0.0000

0.0000
0.0000

1.9988
0.3990

-0.0029
0.1954

0.0010
-0.0200

-0.0029
0.1954

Theoretical value
Results

Msplit estimators Shift-Msplit estimators

y0 = 2.000
ŷ0;α = 2.0017
ŷ0;β = 1.9988

∆y0 = 0.000 ∆ŷ0 = ŷ0;β − ŷ0;α = −0.0029 ∆̂y0 ;α = ∆̂y0 ;β = ∆̂y0 ;split = −0.0029
ϕα = π/16 = 0.196
ϕβ = 2π/16 = 0.393

ϕ̂α = 0.2036
ϕ̂β = 0.3990

∆ϕ = π/16 = 0.196 ∆ϕ̂ = ϕ̂β − ϕ̂α = 0.1954 ∆̂ϕ;α = ∆̂ϕ;β = ∆̂ϕ;split = 0.1954

The graphical interpretation of the theoretical assumptions and the estimation re-
sults are also shown in Figure 1.

Now, let us consider other values of ϕα and ϕβ, hence other values of the phase
shift (the other assumptions remain the same). The results of Msplit and Shift-Msplit
estimations are presented in Table 2. Additionally, Table 2 presents the differences e
between theoretical values and their estimates, namely



90 Robert Duchnowski, Zbigniew Wiśniewski

for Msplit estimates:

eϕ̂α = ϕα − ϕ̂α, eϕ̂β = ϕβ − ϕ̂β, e∆ϕ̂ = ∆ϕ − ∆ϕ̂

eŷ0;α = y0 − ŷ0;α, eŷ0;β = y0 − ŷ0;β, e∆ŷ0 = ∆y0 − ∆ŷ0

for Shift-Msplit estimates:
e∆̂ϕ = ∆ϕ − ∆̂ϕ;split

e∆̂y0
= ∆y0 − ∆̂y0;split

Fig. 1. Simulated observations of the waves (o) and the results of Msplit and Shift-Msplit estimations

The assumed linear models of Eqs. (57) and (58) are not suitable for bigger values
of ϕα and ϕβ, however, the results obtained are close to the theoretical values. Thus this
assumption did not influence the estimation process in a significant way, however, one
can note that usually the larger values of the phase shift are, the bigger the differences
e are obtained.

3.2. Example 2

The shift of the parameters is often the basis in deformation analysis and sometimes it
can be regarded as displacements of network points. As it was already mentioned, there
are several methods used for such purposes (e.g. Caspary, 1988; Chen, 1983; Singh
and Setan, 2001). Some examples were also presented in the papers that concern Msplit
estimation (Wiśniewski, 2009a, 2009c, 2010). The example presented here refers to
Example 4, section 4 in (Wiśniewski, 2009a) and Example 4, section 3 in (Wiśniewski,
2009c).
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Table 2. The final estimates and their errors for the different values of the phase offsets ϕα and ϕβ and
for the constant y0 = 2.000 (∆y0 = 0.000)

Theoretical values
ϕα
ϕβ
∆ϕ

Msplit Shift−Msplit

ϕ̂α
ϕ̂β
∆ϕ̂

eϕ̂α
eϕ̂β
e∆ϕ̂

ŷ0;α
ŷ0;β
∆ŷ0

eŷ0 ;α
eŷ0 ;β
e∆ŷ0

∆̂ϕ;split e∆̂ϕ ∆̂y0 ;split e∆̂y0

1/32 π = 0.0982
2/32 π = 0.1963
1/32 π = 0.0982

0.1010
0.1955
0.0945

0.0028
-0.0008
-0.0037

2.0021
1.9990

-0.0031

0.0021
-0.0010
-0.0031

0.0945 -0.0037 -0.0030 -0.0030

1/32 π = 0.0982
3/32 π = 0.2945
2/32 π = 0.1963

0.1029
0.2945
0.1916

0.0047
-0.0001
-0.0048

2.0019
1.9991

-0.0028

0.0019
-0.0009
-0.0028

0.1916 -0.0048 -0.0028 -0.0028

1/32 π = 0.0982
4/32 π = 0.3927
3/32 π = 0.2945

0.1060
0.2937
0.2878

0.0078
0.0010

-0.0068

2.0018
1.9990

-0.0028

0.0018
-0.0010
-0.0028

0.2878 -0.0068 -0.0028 -0.0028

1/16 π = 0.1963
2/16 π = 0.3927
1/16 π = 0.1963

0.2036
0.3990
0.1954

0.0072
0.0063

-0.0009

2.0017
1.9988

-0.0029

0.0017
-0.0012
-0.0029

0.1954 -0.0009 -0.0029 -0.0029

1/16 π = 0.1963
3/16 π = 0.5890
2/16 π = 0.3927

0.2150
0.6024
0.3874

0.0187
0.0134

-0.0053

2.0014
1.9986

-0.0028

0.0014
-0.0014
-0.0028

0.3874 -0.0053 -0.0028 -0.0028

1/16 π = 0.1963
4/16 π = 0.7854
3/16 π = 0.5890

0.2306
0.8074
0.5768

0.0343
0.0220

-0.0123

2.0011
1.9982

-0.0028

0.0011
-0.0018
-0.0029

0.5768 -0.0123 -0.0028 -0.0028

1/8 π = 0.3927
2/8 π = 0.7854
1/8 π = 0.3927

0.4061
0.8376
0.4315

0.0134
0.0522
0.0388

2.0009
1.9971

-0.0039

0.0009
-0.0029
-0.0039

0.4315 0.0388 -0.0039 -0.0039

1/8 π = 0.3927
3/8 π = 1.1781
2/8 π = 0.7854

0.4250
1.2485
0.8238

0.0323
0.0704
0.0381

2.0006
1.9958

-0.0048

0.0006
-0.0042
-0.0048

0.8235 0.0381 -0.0048 -0.0048

1/8 π = 0.3927
4/8 π = 1.5708
3/8 π = 1.1781

0.3948
1.5694
1.1746

0.0021
-0.0014
-0.0035

2.0007
1.9941

-0.0066

0.0007
-0.0059
-0.0069

1.1746 -0.0035 -0.0068 -0.0068

The levelling network that we are interested in is presented in Figure 2. Two
network points named as P1 and P2 are the fixed ones with heights HP1 = 0.00 and
HP2 = 0.00. There are also three unknown points named as A, B and C.

Let the height differences hi, i = 1, 2, . . . , 8, be measured two times at two different
epochs (1) and (2). Two following functional models correspond to the measurement
epochs

v1 = y1 − ĀH1 (63)

v2 = y2 − ĀH2 (64)

where

ĀT =



1 0 0 1 0 0 −1 0
0 1 0 0 1 0 1 −1
0 0 1 0 0 1 0 1
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Fig. 2. Tested levelling network

The vectors v1 and v2 are errors of the following observation vectors (hi j is the ith

height difference measured at the epoch j = 1, 2):

y1 = [h11, h21, h31, h41, h51, h61, h71, h81]

y2 = [h12, h22, h32, h42, h52, h62, h72, h82]

The parameter vectors of the models from Eqs. (63) and (64), namely
H1 = [HA1,HB1,HC1]T and H2 = [HA2,HB2,HC2]T are vectors of the point heights
in two measurement epochs. The functional models from Eqs. (63) and (64) are the
basis for the traditional model of network deformation

∆v = v2 − v1 = y2 − y1 − Ā(H2 −H1) = y2 − y1 − Ā∆H (65)

where ∆H = H2 − H1 = [∆HA , ∆HB , ∆HC ]
T is the shift of the point heights. The LS

estimator of this shift will be denoted later as ∆̂H;LS.
Now, let the shift vector ∆H be estimated by applying Shift-Msplit estimation. First,

let the vectors y1 and y2 combine to form one observation vector

y = [h11, h12, h21, h22, h31, h
,
32h41, h42, h51, h52, h61, h62, h71, h72, h81, h82]T

Such combined vector corresponds to two competitive functional models

vα = y − AHα (66)

vβ = y − AHβ (67)

where A = [āT
1 , ā

T
1
... āT

2 , ā
T
2
... . . .

... āT
6 , ā

T
6 ]T is formed by repeating certain rows of the

matrix Ā. Since the observation vector y is the same in both models of Eqs. (66) and
(67) then the shift model (65) can be written as

∆v = vβ − vα = y − y − A(Hβ −Hα) = −A∆H (68)
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The observation vector y is simulated under assumptions that measurement errors are
Gaussian errors with the mean of 0 and standard deviation of 0.01, and the theore-
tical heights of the points A, B and C at the epoch (1) are as follows HA1 = 1.0,
HB1 = 1.0, HC1 = 1.0, i.e. H1 = [1.0, 1.0, 1.0]T. It is also assumed that some of the
network points moved downwards at the epoch (2) and let us consider two following
variants of such displacements (see Wiśniewski, 2009c)

Variant 1: ∆t
H = H2 −H1 = [0.0, 0.0, −1.0]T

Variant 2: ∆t
H = H2 −H1 = [0.0, −1.0, −1.0]T

where ∆t
H is a vector of the theoretical displacements (underlined – the values for the

displaced points). The results of Shift-Msplit estimation for both proposed variants are
presented in Table 3.

Table 3. The course of the iterative process of Shift-Msplit estimation

Variant 1: y = [1.01, 0.98
... 1.00, 1.02

... 0.98, 0.01
... 0.97, 0.99

...

1.00, 1.01
... 0.99, −0.01

... 0.02, −0.01
... − 0.01,−1.01]T

∆t
H = [0.0, 0.0, −1.0]T

step j
0 1 2 3 4 5 6 7 8 9 10

∆
j
Hα

0.000
0.000
0.000

0.006
-0.006
-0.002

0.013
-0.026
-0.010

-0.046
-0.101
-0.039

-0.181
-0.332
-0.130

-0.298
-0.533
-0.255

-0.275
-0.544
-0.431

-0.177
-0.412
-0.771

-0.005
-0.061
-0.977

0.032
0.015
-0.985

0.033
0.015

-0.985

∆
j
Hβ

0.003
-0.003
-0.001

0.010
-0.013
-0.005

-0.003
-0.051
-0.020

-0.078
-0.194
-0.074

-0.174
-0.467
-0.196

-0.270
-0.549
-0.325

-0.275
-0.509
-0.586

-0.178
-0.230
-0.916

0.009
0.008
-0.985

0.031
0.015
-0.985

0.033
0.015

-0.985

Variant 2: y = [1.01, 0.98
... 1.00, 0.02

... 0.98, 0.01
... 0.97, 0.99

...

1.00, 0.01
... 0.99, −0.01

... 0.02, −1.01
... − 0.01, 0.01]T

∆t
X = [0.0, −1.0, −1.0]T

∆
j
Hα

0.000
0.000
0.000

0.071
0.035
-0.018

0.255
0.130
-0.071

0.500
0.290
-0.224

0.458
0.326
-0.438

0.336
0.225
-0.598

0.264
-0.006
-0.748

0.244
-0.487
-0.916

0.074
-0.946
-0.984

0.045
-0.985
-0.985

0.045
-0.985
-0.985

∆
j
Hβ

0.036
0.018
-0.009

0.140
0.070
-0.037

0.408
0.217
-0.134

0.505
0.329
-0.335

0.394
0.289
-0.525

0.289
0.129
-0.669

0.259
-0.209
-0.832

0.160
-0.779
-0.967

0.046
-0.984
-0.985

0.045
-0.985
-0.985

0.045
-0.985
-0.985

Similar results can also be obtained if the shift is estimated by the traditional
LS-method, and by applying the model of Eq. (65). Let us now consider the case
where the observation vector is affected by gross errors. To investigate this problem
let us consider the first variant presented above and let the height difference h32 be
disturbed with a gross error g. The values of the gross error are chosen in such a way
that shows how the method proposed here responds to such disturbances. The results
of both LS-estimation (∆̂H;LS) and Shift-Msplit estimation (∆̂H;split) are listed in Table 4.

The results show that both methods are not robust against gross errors, however,
they respond to such disturbances in different ways. The gross error affects the LS
estimates in a well known way, the bigger it is, the larger the influence becomes. For
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the Shift-Msplit estimates, the influence grows bigger first but then it decreases. This
reflects of how the observation h32 “moved” from the second group to the first one,
namely if g = 0.00 then this observation is assigned to the second epoch but in the
last variant where g = 1.00 the observation in question just “ignores” the displacement
of the point C and it is regarded as the observation from the first epoch. Thus, in this
case, the gross error does not affect the estimation process.

Table 4. LS and Shift-Msplit estimates of the shift where observations are affected by gross errors

Without a gross error With the gross error g

g 0.00 0.05 0.25 0.50 0.75 0.95 1.00

∆̂H;LS

0.008
0.005
-0.988

0.010
0.010

-0.970

0.017
0.030
0.897

0.025
0.055

-0.805

0.033
0.080
-0.731

0.040
0.100

-0.640

0.042
0.105
-0.622

∆̂H;split

0.033
0.015
-0.985

-0.006
0.038

-0.961

0.049
0.115
-0.884

0.077
0.144

-0.853

0.039
0.086
-0.913

0.033
0.014

-0.986

0.030
0.003
-1.003

4. Conclusions

The method that is proposed in the present paper is based on squared Msplit estimation
that was presented in (Wiśniewski, 2009a, 2009c). Hence, the theoretical as well as
practical properties of Shift-Msplit estimates correspond to the general properties of
squared Msplit estimator.

The optimization problem of Msplit estimation in relation to the shift of parameters
is solved by the use of two equivalent systems of normal equations (see, Eq. (38)
and Eq. (39)), which follow sufficient conditions of optimality. These systems are
directly related to the system of normal equations in LS-method. Thus, the optimization
problem of Shift-Msplit estimation is solved without significant numerical problems.
The present paper shows that Msplit estimation, in the form that is proposed here, is
not only a theoretical development of LS-method. It may also be solved in a similar
practical way. The alternate iterative process, namely solving the equivalent systems of
normal equations alternately, is in fact equivalent to LS-method that is carried out in
two parallel processes with two different objective functions from Eqs. (36) and (37).
These functions directly point at mutual cross-weighting of the competitive functional
models. This property of Msplit estimation was discussed, mainly from a theoretical
point of view, in the papers (Wiśniewski, 2009a, 2009b).

The numerical examples that are presented in this paper are related to the real
surveying problems. However, since the present paper focuses on theory rather than
practice, they are not complete solutions of these problems. The estimation of the phase
shift, for example in GPS techniques, requires more developed functional models.
On the other hand, the use of such models would obscure the main properties of
Shift-Msplit estimation, and the diagnosis of such properties is, at this stage of research,
the primary objective. It is also worth noting that the estimate values are very close to
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the assumed theoretical shifts. However, the estimation results are less similar to the
theoretical values when the phase shift grows bigger (see Table 2). This results from
the fact that the nonlinear wave model is expanded in a Taylor series confined to the
first terms only. This example points also at small sensitiveness of Shift-Msplit estimates
to “fuzzy” differences between elements of the split observation set (see Fig. 1).

The results obtained in the second example are also very interesting from a practi-
cal point of view. This example illustrates possible application of Shift-Msplit estimates
in deformation analyses. It shows the iterative process and the organization of compu-
tations rather than gives a complete method of how to apply Shift-Msplit estimation in
such surveying problems. In practice, such application needs additional analyses that
should concern, for example, comparison with conventional methods. One should pay
special attention to two main properties of Shift-Msplit estimates, namely the indepen-
dence from the way of ordering of the observation set and in special cases robustness
against outliers. In the case of geodetic networks, which are measured twice at two
different epochs, there is no problem to arrange observations properly. If additionally
no observation is affected by a gross error, then results of Shift-Msplit estimation will
be similar to traditional LS-estimates. This equivalence is true if only both presented
conditions are met. The second property, namely robustness, needs some comments.
In general, it is a natural property of all Msplit estimates. This is due to the split of
the observation set (the observations are also divided into “matching” and “outlying”).
However, the presented examples show that Shift-Msplit estimates are usually affected
by gross errors and the method is robust only in special cases. Thus this special case of
Msplit estimates is generally not robust against gross errors. The possible robustness of
Shift-Msplit estimates requires other theoretical assumptions, hence also new solutions,
which goes beyond the scope of this paper. It should also be studied in relation to
inner reliability that is defined and described in the papers (Prószyński, 1997, 2010).
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Streszczenie

Przedstawiona w pracy metoda jest szczególnym przypadkiem kwadratowej Msplit estymacji. Dotyczy
ona bezpośredniej estymacji przesunięcia między wartości parametrów występujących w funkcjonalnych
modelach obserwacji. Takie przesunięcie (shift) może na przykład wynikać z deformacji sieci geodezyjnej
lub innych nielosowych zakłóceń obciążających jej współrzędne. W pracy przedstawiono także przykład,
w którym shift jest utożsamiany z przesunięciem fazowym fali. Przesunięcie to jest estymowane na
podstawie pomiarów wartości fali, realizowanych bez informacji o punktach, w których takie przesunięcie
występuje. Zaproponowane estymatory nazwano ogólnie Shift-Msplit estymatorami.




