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Abstract: The paper presents results of the transformation between two height systems
Kronstadt’60 and Kronstadt’86 within the area of Krakow’s district, the latter system being
nowadays a part of National Spatial Reference System in Poland. The transformation between
the two height systems was carried out based on the well known and frequently applied
in geodesy polynomial regression. Despite the fact it is well known and frequently applied
it is rather seldom broader tested against the optimal degree of a polynomial function,
goodness of fit and its predictive capabilities. In this study some statistical tests, measures
and techniques helpful in analyzing a polynomial transformation function (and not only)
have been used.

Keywords: height transformation, polynomial regression, confidence intervals, cros-
svalidation

1. Introduction

A change of a reference system and what goes further horizontal and vertical datums
on the area of a given country is usually a long term process. In Poland new geodetic
datums were introduced in the year 2000 within the framework of the National Spatial
Reference System (GUGiK, 2000). Since that time till now there have been works
carried out in order to complete resolutions included in this document. They concern
all existing geodetic resources, including geodetic networks. The introduction of the
new vertical datum for the minor vertical networks (III – V class) is carried out by
local governmental units such as districts. One of the methods used for computing
heights in the compulsory system is a height transformation between “old” and “new”
system preformed on the basis of benchmarks of the basic vertical control network,
having heights in both systems. The essence of such transformation is an algorithm
assuring the homogeneity and appropriate accuracy of computed heights.

In this study, in order to satisfy these two conditions a polynomial transformation
model has been used. Its simplicity and well established theory in the framework
of linear regression models make it very useful and common in solving (approxima-
ting) different problems within the field of geodesy. Height transformations are not
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an exception in this respect (Hadaś and Bosy, 2009; Gucek and Basic, 2009; Osada,
2008). Although the use of polynomials in height transformations is recently mainly
concentrated on the transformation between geometric heights (derived from GPS) and
those referenced to the Earth’s gravity field (orthometric, normal orthometric heights)
the issue raised in this study (transformation between height systems Kronstadt’60
and Kronstadt’86) certainly is not of less practical importance. In this study the main
focus is centered on testing polynomial transformation models in order to emerge the
best one assuring acceptable accuracy with high level of certainty as to the heights
of transformed points, thus some level of redundancy will be present in the following
parts of this work.

2. Study area and data

The Krakow’s district does not constitute a compact area. In the center there is the
city of Krakow which is a separate territorial unit (Fig. 1). There are several leveling
lines of the Ith class and tens of leveling lines of the IInd class of the basic (primary)
vertical network crossing the area (Fig. 1). Information on this vertical control network
in Kronstadt’60 system is contained in Catalogues of Leveling Lines (Katalog, 1960)
whereas Sketches of Leveling Lines (Pulkowo’42 reference system, scale 1:100000)
provide one with the localization of benchmarks necessary in the process of trans-
forming between the two height systems. Determination of horizontal coordinates of
benchmarks was possible by an appropriate calibration and digitization of Sketches of
Leveling Lines.

Data on the basic vertical control network in Kronstadt’86 system are contained in
digital registers provided by Central Geodetic and Cartographic Documentation Center.
The horizontal coordinates of benchmarks contained in digital registers are determined
in the (former) national horizontal system 1965. Confronting both data sources concer-
ning the basic vertical network within the study area enabled a preliminary selection of
benchmarks common for both height systems (176 benchmarks) and 150 benchmarks
have left after a more detailed analysis (Fig. 1).

Minor vertical network (III-V class) within the area consists of about 600 bench-
marks concentrated mainly near big cities. Heights of benchmarks in Kronstadt’60
system are contained in a digital database and localization may be acquired from ana-
logue height overlays in 1:10000 scale. Digitization of benchmarks on overlays made
the determination of their horizontal coordinates possible.

Uncertainty as to the identification of horizontal position of benchmarks of primary
and minor vertical networks may vary considerably. An analysis revealed that the
accuracy of horizontal coordinates may be on the level of several or tens of meters
and in individual cases for the minor vertical network may exceed even 100 meters.
Hence, and additional study of the impact of the horizontal position of control points
on the transformation function was conducted.

Table 1 summarizes the dataset of 150 common points of the Ith class of the
primary vertical network as to the height difference between systems Kronstadt’60 and
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Fig. 1. The boundaries of Krakow’s district (study area), red dots – the basic vertical control network
(I class), black dots – minor vertical network (III-V class)

Kronstadt’86 (dH86−60). These points established the base for determining a transfor-
mation model.

Table 1. Summary of height differences (dH86−60) on common benchmarks, in meters

Number of points min first quartile median third quartile max range average std. dev.

150 -0.0514 -0.0364 -0.0344 -0.0327 -0.0281 0.0233 -0.0351 0.0037

3. Transformation function

In order to find a suitable transformation function tying both height systems (Kron-
stadt’60 and Kronstadt’86) a polynomial model has been used. This kind of model
has widespread applications in different fields of the Earth sciences i.e. geology, geo-
physics, geography, soil science and many others. It is very often associated with the
name Trend Surface Analysis (TSA) which is the particular case of the well known in
statistics multiple regression analysis (Davies, 2003; Schabenberger and Gotway, 2005).
Particularity of the TSA relies on the fact that the independent variables of the model
are spatial coordinates of the observed phenomena. Thus, in the paper the names:
polynomial transformation function, polynomial regression and trend surface will be
used exchangeable. As stated above, the polynomial transformation model is nothing
but a polynomial regression thus the observed variable (or pseudo – observation, here
the difference between the heights of the same point in the two height systems) is
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decomposed into two components: a trend and a disturbance. The trend represents the
global effect (average behavior of the phenomena under study) and the disturbance
reveals the local effects (local fluctuations). This may be written as:

li = f (xi, yi) + εi (1)

where:
li – observed value (here the difference between the heights of the same point in

the two height systems dH86− 60)
xi, yi – spatial coordinates
εi – disturbance (error term)
General pth degree trend surface is given as:

li =

p∑

k=0

p∑

m=0

akmxk
i y

m
i + εi k + m ≤ p (2)

or in compact matrix notation as:

L = Xa + ε (3)

It is easy to notice that the number of coefficients of a polynomial increases rapidly
with the degree of the polynomial, this may be expressed as N = (p+1)(p+2)/2,
where N is the number of coefficients and p is the degree of a polynomial. Hence,
the number of observations is strictly connected with the degree of the polynomial.
A Polynomial approach being quite simple in use it also carries some load of difficulty.
It has an undesirable feature to wave the edges to fit points in the center. This effect
is well known in polynomial regression, but is more severe in two or more dimensions
where there are more boundaries to be affected (Ripley, 2004). This drawback may
be fixed to some extent by taking some buffer outside the study area. Also, from the
numerical viewpoint it is known to be an ill – conditioned least squares problem,
due to the fact that with higher and higher powers of spatial coordinates it leads
to extreme values in the design matrix. From this reason a suitable transformation
of spatial coordinates is necessary. The literature concerning the subject offers some
transformation (centering/shifting/scaling) techniques (Shacham and Brauner, 1997),
e.g.: 

x′i =
xi

xmax

y′i =
yi

ymax

(4)



x′i =
xi − xmin

xmax − xmin

y′i =
yi − ymin

ymax − ymin

(5)
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x′i =
2xi − xmax − xmin

xmax − xmin

y′i =
2yi − ymax − ymin

ymax − ymin

(6)



x′i =
xi − x̂

sx

y′i =
yi − ŷ

sy

(7)

where:
xi, yi – original spatial coordinates
xmin, ymin, xmax, ymax – maximum and minimum values of original spatial coordi-

nates
x̂, ŷ, sx, sy – averages and standard deviations of original spatial coordinates
x′i , y′i – spatial coordinates after transformation
Thus, applying one from the above transformation techniques one obtains a new

form of (3) i.e.:
L = X′b + ε (8)

Extraction of coefficients b (a) from (8) or (3) is performed via ordinary least squares.
The Table 2 reports estimates of parameters, standard errors as well as t – statistics and
corresponding p – values for bilinear and quadratic trend surfaces fitted to data. All
the parameters for both trend surfaces are statistically significant and this constitutes
the base for further analysis. In addition, a graphical analysis of residuals for the
quadratic transformation function as the further model of choice is presented in Table
2 and Figure 2. The graphical analysis supports the Jarque – Bera test verifying the
normality of residuals.

Table 2 Estimates of parameters, standard errors, t – statistics for bilinear and quadratic trend surfaces

CASE coeff. std. error t – stat p – value

B
IL

IN
E
A

R

a00 -2.96949248E+02 3.26282517E+01 -9.10 0.0000
a10 5.49240737E-05 6.03532140E-06 9.10 0.0000
a01 6.55357889E-05 7.16638275E-06 9.14 0.0000
a11 -1.21229979E-11 1.32558219E-12 -9.15 0.0000
On the basis of Jarque – Bera test there is no ground to reject
the hypothesis of normality of residuals.

Q
U
A

D
R

A
T
IC

a00 -5.53054544E+02 4.65889392E+01 -11.87 0.0000
a10 1.29474514E-04 1.49210160E-05 8.68 0.0000
a01 8.95083119E-05 1.06008273E-05 8.44 0.0000
a11 -1.15434100E-11 1.16846584E-12 -9.88 0.0000
a20 -7.13728380E-12 1.36857683E-12 -5.22 0.0000
a02 -2.97831441E-12 8.67257557E-13 -3.43 0.0008
On the basis of Jarque – Bera test there is no ground to reject
the hypothesis of normality of residuals.
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Fig. 2. Graphical analysis of residuals for the quadratic transformation function

4. Significance of the polynomial transformation function and polynomial’s
degree

Analysis of variance for significance of bilinear and quadratic transformation functions
has been used. The analysis of variance relies on dividing the total variation in the
response variable, here L (height difference between the two height systems) into
two components: SSR – sum of squares of regression which measures the amount of
variation explained by the model and SSD (SSE) – sum of squares of deviations (or
errors) which on the other hand measures the residual variation that is not explained by
the adopted model. The sum of these two quantities equals to the corrected total sum
of squares SST (more on ANOVA may be found in e.g. Rao and Toutenburg, 1999;
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Davies, 2003; Rawlings et al., 1998). The method of ANOVA is helpful in determining
whether there is a relationship between response variable and the set of explanatory
variables, in order to do this one tests the hypothesis:

H0 : a1 = a2 = . . . = ak = 0
H1 : not all ai = 0

(9)

Conclusions on the above hypothesis are drawn on the basis of the test statistics:

F =
SSR/ (k − 1)
SSD/ (n − k)

(10)

which is compared to the critical value F(α, k-1, n-k) of the F distribution on the
adopted significance level α with (k-1, n-k) degrees of freedom. If F >F(α, k-1, n-k)
hypothesis H0 may be rejected and one may conclude that the response variable is
related to one or more explanatory variables. Table 3 presents the results of analysis of
variance for significance of analyzed models as well as the residual standard deviation
m0, and coefficient of determination R2 and corrected coefficient of determination R2

corr
as measures of goodness of fit.

Table 3. Analysis of variance (ANOVA) for significance of polynomial regression (height transformation
function) for bilinear and quadratic cases

CASE
Source of
variation

Degrees of
freedom Sum of squares Mean squares F – test

B
IL

IN
E
A

R

Total
(uncorrected) n 150 SSU 0.186446

F = 80.52Total
(corrected) n – 1 149 SST 0.002072 0.000014

Polynomial
regression k – 1 3 SSR 0.001291 0.000430

Deviations from
polynomial n – k 146 SSD 0.000781 0.000005

m0 = ±2.3mm, R2 = 0.62, R2
corr = 0.62

Q
U
A

D
R

A
T
IC

Total
(uncorrected) n 150 SSU 0.186446

F = 73.98Total
(corrected) n – 1 149 SST 0.002072 0.000014

Polynomial
regression k – 1 5 SSR 0.001491 0.000298

Deviations from
polynomial n – k 144 SSD 0.000581 0.000004

m0 = ±2mm, R2 = 0.72, R2
corr = 0.71

n – number of observations, k – total number of coefficients

Analyzing entries of Table 3 one notices that the hypothesis H0 from (9) may
be rejected in favor of H1 what implies that there is some trend in the data (for both
bilinear and quadratic trend surfaces). For the quadratic case the corrected coefficient of
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determination reaches the value of 0.71 what may be interpreted as 71% of variability
in the response variable (height differences) is explained by this model. This implies
that the quadratic model should be better then the bilinear one.

As far as authors’ knowledge goes there is not any a priori method answering the
question what degree of the polynomial should be used to data at hand. This question
is answered a posteriori usually by successive fitting higher degree polynomials to the
data and each time inspecting the residual variance and the range of residuals. This
is usually the base on which conclusions as to the polynomial’s degree are drawn.
Here, a more formal way of testing whether the gain associated with the increase
of polynomial’s degree is statistically significant is presented. This test relies also on
some form of the analysis of variance but this time the difference between the sums of
squares of regression of (p+1) and (p) degree is confronted with the sum of squares
of deviations from the (p+1) degree model. The scheme of computation may be found
in e.g. Davies (2003), Krumbein and Graybill, (1965). Here, only the results will be
reported.

Table 4 presents the abovementioned analysis of variance for significance of incre-
ase from bilinear to quadratic trend surface, in fact statistically significant. This may
constitute the formal confirmation of the choice of the quadratic polynomial transfor-
mation function based on analysis of variance.

Table 4. Analysis of variance for significance of increasing the degree of transformation function,
bilinear vs. quadratic

Source of variation
Degrees of
freedom Sum of squares Mean squares F – test

Quadratic regression 5 0.00149141 0.00029828

F = 24.80

Deviations from quadratic
regression 144 0.00058057 0.00000403

Bilinear regression 3 0.00129144 0.00043048
Deviations from bilinear

regression 146 0.00078054 0.00000535

Increase form bilinear to
quadratic regression 2 0.00019997 0.00009999

Total variation 149 0.00207198 0.00001391

5. Akaike Information Criterion

Another statistical tool useful in identification the best model among all nested models
is Akaike Information Criterion (AIC). Among the models (estimated on the basis of
the same dataset) one chooses the one with the lowest AIC value (single AIC value
has no meaning) (Schabenberger and Gotway, 2005). AIC is defined by the following
formula:

AIC = −2 · ln (L (â|L)) + 2 · u (11)



Local height transformation... 11

In case of small samples (n/k <∼ 40) it is recommended to use corrected AIC expressed
as:

AICc = −2 · ln (L (â|L)) + 2 · u +
2u (u + 1)
n − u − 1

= AIC +
2u (u + 1)
n − u − 1

(12)

where:
ln (L (â|L))− maximized value of likelihood function for estimated model
u – the number of estimated parameters including the residual variance
n – the sample size
When models are estimated with least squares and there is no ground to reject the

hypothesis of normality of errors, AIC is given as:

AIC = n ln
(
RSS
n

)
+ 2 · u (13)

where: RSS is residual sum of squares (sum of squares of deviations) and
RSS
n

is a
biased estimator of the residual variance

Table 5. Residual sum of squares, AIC and AICc for bilinear and quadratic trend surfaces

Model Number of parameters RSS AIC AICc

Bilinear 5 0.00078054 -1814.92 -1814.51

Quadratic 7 0.00058057 -1855.32 -1854.53

6. Crossvalidation

In the ideal case, one would like to have an extensive data set with as much additional
data as one may imagine. Thus, every model constructed on such dataset could be
tested under different condition and probably yielding satisfactory results each time.
Unfortunately, additional data are seldom available due to additional cost, extra work
done and so on. In order to omit the problem of lack of additional data one may use
the crossvalidation technique.

The idea of crossvalidation is pretty simple, and rests on the division of the original
dataset on two subsets; the first one is called a training set and the other is called a
validation set. On the basis of the training set a model is built and one tries to forecast
the data from the validation set. Among different types of crossvalidation models the
Leave One Out CrossValidation (LOOCV) is probably the most often used. It relies
on dropping out only one observation at a time from the entire dataset (n – times)
and making a prediction of its value from the remaining n-1 observations (Efron and
Tibshirani, 1993; Wackernagel, 2003). Thus, for every single observation from the
data set one may determine the difference between the real observed value li and
that provided by the model fitted to n-1 observations. In this way one obtains the
crossvalidation error in the form:

eCVi = li − l̂(n−1)
i (14)
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Averaging these differences over all observations one obtains the average crossvalida-
tion error, given as:

êCV =

n∑
i=1

(
li − l̂(n−1)

i

)

n
≈ 0 (15)

If its value is close to zero one may infer that prediction was made without an apparent
bias. On the other hand, if there is a significant deviation from zero one may expect
a systematic overestimation (or underestimation) introduced by the model (Wackerna-
gel, 2003).

In order to compare the real prediction capabilities of different models the mean
squared crossvalidation error (16) is constructed for every individual model.

σCV =

√√√√ n∑
i=1

(
li − l̂(n−1)

i

)2

n
(16)

The model with the least value of the mean squared crossvalidation error (16) will
claim to be the best model among all tested but, of course, it cannot be considered in
isolation from other quantities. The Table 6 presents the results of crossvalidation and
least squares model fitting for bilinear and quadratic transformation functions.

Table 6. Results of crossvalidation and least squares fit for bilinear and quadratic surfaces

Case Crossvalidation [m] Fitted model [m]

Bilinear

Minimum error -0.0200 Minimum residual -0.0060

Maximum error 0.0068 Maximum residual 0.0066

Averaged crossvalidation error -0.0006 Averaged residual 0 (from theory)
Mean squared crossvalidation error 0.0042 Residual standard deviation 0.0023

Summary of crossvalidation errors [mm] Summary of residuals [mm]

[0,1] (1,2] (2,3] (3,4] (4,5] (5,8] >8 [0,1] (1,2] (2,3] (3,4] (4,5] (5,8] >8

35 36 25 21 12 13 8 38 52 39 10 7 4 0

Quadratic

Minimum error -0.0122 Minimum residual -0.0055

Maximum error 0.0054 Maximum residual 0.0065

Averaged crossvalidation error -0.0006 Averaged residual 0 (from theory)
Mean squared crossvalidation error 0.0038 Residual standard deviation 0.0020

Summary of crossvalidation errors [mm] Summary of residuals [mm]

[0,1] (1,2] (2,3] (3,4] (4,5] (5,8] >8 [0,1] (1,2] (2,3] (3,4] (4,5] (5,8] >8

29 39 31 20 13 11 7 56 54 23 10 5 2 0

In every case (bilinear and quadratic) the crossvalidation statistics are slightly
higher comparing to statistics derived from the fitted model. There is no apparent
bias visible. The residual standard deviation from the fitted models for each case is
almost half the mean squared crossvalidation error what may indicate that the overall
fit described by the residual standard deviation may be somewhat too optimistic.
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7. Confidence intervals on transformation function and on a single predicted
value

In order to verify how reliable (at least from statistical standpoint) for prediction pur-
poses the estimated quadratic trend surface is, a confidence interval was spread around
it. It was to show places within the study area where we can expect the best and the
worst accuracy. To do so, the method of construction of confidence intervals from
(Krumbein, 1963; Krumbein and Graybill, 1965) is adopted. Thus, denoting the true
trend surface as L(x,y) and its estimated counterpart as L̂ (x, y) we may symbolically
write:

L̂ (x, y) − m0

√
kFαxT (

XTX
)−1 x ≤ L (x, y) ≤ L̂ (x, y) + m0

√
kFαxT (

XTX
)−1 x (17)

where: k – total number of coefficients of the model, Fα - quantile of the F distribution
with (k, n-k) degrees of freedom and a significance level α, x – vector of coordinates
(and their powers depending on the polynomial’s degree) for a point for which the
upper and lower bound is estimated, (XTX)−1 – inverse of the normal equation matrix,
m0 – residual standard deviation.

This general formula is applied to as many points (a regular grid is preferred) as
desired in order to produce a reasonable map of upper and lower bounds of confidence
interval. But here, in order to save some space and to be more informative a contour
map of half of the 0.95 confidence interval is presented (Fig. 3). As could be expected
the most accurate fit of the polynomial surface is around the center of the study area
providing the half-width of the 0.95 confidence interval on the level of 1 mm and
decreasing out-of-center down to 3 mm.

As the main goal of the transformation function is height prediction for new points
rather then just description of the phenomena itself it is reasonable to use mean square
error of prediction (18) and confidence intervals for new predicted values (19) as
statistical measures of prediction accuracy.

mp = m0

√
1 + x̆T

i
(
XTX

)−1 x̆i (18)

l̆i ± t α
2 ,n−km0

√
1 + x̆T

i
(
XTX

)−1 x̆i = l̆i ± t α
2 ,n−kmp (19)

where: k – total number of coefficients of the model, tα/2 - quantile of the t distribution
with (n-k) degrees of freedom and a significance level α, x̆ – vector of coordinates
(and their powers depending on the polynomial’s degree) for a point for which the
upper and lower bound is estimated, (XTX)−1 – inverse of the normal equation matrix,
m0 – residual standard deviation.

These measures of prediction accuracy provided by the model could be confronted
with the true errors for 8 points (little but always something) of the IInd class of the
basic vertical network having their heights in both systems and clearly identified within
the study area (Fig. 4, blue dots).
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Fig. 3. Half of the confidence interval width for the quadratic transformation function (confidence level
1-α = 0.95, half confidence interval width given in [mm])

Fig. 4. Localization of 8 points of the IInd class of the basic vertical network used for the “true”
validation purposes (blue dots)
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Table 7 presents the result of the true validation – comparison between the “true”
prediction errors defined as “True dH86− 60” minus “Estimated dH86− 60” and those
provided by the transformation model. As can be seen from the Table only one “true
prediction error” is significantly larger then the prediction error from the model (point
no 1 in the Table). Thus in some cases prediction errors provided by the model may
be too optimistic. On the other hand, taking the 0.95 confidence interval around each
predicted point a more realistic level of uncertainty is achieved (≈ ±5 mm) and this
should be taken as a measure of accuracy of predicted (transformed) points.

Table 7. Comparison of the “true” prediction errors and those provided by the quadratic polynomial
model on 8 test points of the IInd class of the primary vertical network

Point
True dH

[m]
Estimated dH

[m]
True – Estimated

[m]
Prediction error

[m]

1-α = 0.95 half of the
confidence interval

width [m]
1 -0.0369 -0.0404 0.0035

≈ ±0.002 ≈ ±0.005

2 -0.0393 -0.0398 0.0005
3 -0.0427 -0.0399 -0.0028
4 -0.0381 -0.0406 0.0025
5 -0.0397 -0.0409 0.0012
6 -0.0407 -0.0411 0.0004
7 -0.0421 -0.0412 -0.0009
8 -0.0427 -0.0414 -0.0013

8. Impact of the horizontal position of control points on transformation function

In addition to the analysis of the polynomial transformation function presented above
another very important issue had to be resolved. Namely, as stated in the “study area”
section, horizontal position of control and transformed points was identified with the
accuracy varying from several to tens of meters and in some individual cases reaching
even 100 m. In order to verify whether this kind of identification “shift” has any impact
on the results a simple simulation study has been performed. Having the “original”
positions of control points derived through digitization process, new sets of control
points have been obtained by random shifting the “original” position by 10, 50, 100, 500
m. in eight directions i.e.: N, NE, E, SE etc. preserving, of course, the height difference
between two systems constant and assigned to proper point. After each “shifting” a
new transformation function was obtained. This random shifting was performed 1000
times and every time the results from shifted data were confronted with the “original”
transformation function. This was to give the answer to what extent the identification
of horizontal position affects the final result. The simulation study showed that the
dataset under study is not sensitive to the abovementioned shifts. For the largest shift of
500 m the maximum difference between height differences derived form the polynomial
transformation function for the “original” and “shifted” datasets was on the level of
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0.04 mm. This value implies that even the exaggerated shift of 500 m has no practical
meaning in the analysis and its influence on the results may be completely ignored. But
this cannot be said in general, this value is certainly dataset – dependent thus this kind
of simulation study (whenever this type of uncertainty is present) should be performed
for each dataset separately.

9. Conclusions

In the paper, a fairly detailed analysis of the local transformation between two height
systems – Kronstadt’60 and Kronstadt’86 – has been presented. In order to achieve
some level of certainty as to the correctness (accuracy, usability) of the local transfor-
mation performed some redundancy was introduced to fulfill the saying “always make
sure and double check”. On the basis of some statistical tests (analysis of variance),
techniques (crossvalidation) and measures (Akaike Information Criterion) the quadratic
polynomial transformation function was chosen as well describing the dataset of control
points of the Ith class of the major vertical network as well as giving satisfactory results
for transforming points of the minor vertical network. In order to assess the level of
uncertainty associated with height prediction for points of the minor vertical network
the prediction error offered by the polynomial regression was used. The magnitude of
the prediction error on the level of ±2 mm turned out to be slightly too optimistic in
comparison to the “true prediction errors” obtained on 8 points of the IInd class of
the basic vertical network. Hence, as a more realistic measure of prediction accuracy
the 0.95 confidence interval for predicted height differences was constructed giving
the value of prediction uncertainty on the level of ±5 mm. Even the latter value
could slightly be increased by using the mean squared crossvalidated error instead of
the residual standard deviation, then giving the prediction uncertainty on transformed
points on the level of ± 8 mm, and this value is so careful that probably only blunders
will exceed this limit.
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Streszczenie

W artykule przedstawiono wyniki transformacji wysokości między układami Kronsztadt’60 i Kronsz-
tadt’86 na obszarze powiatu krakowskiego. Ostatni z wymienionych układów jest obecnie częścią obo-
wiązującego w Polsce Państwowego Systemu Odniesień Przestrzennych. Transformacja między wymie-
nionymi układami wysokości została wykonana w oparciu o dobrze znaną i często stosowaną w geodezji
regresję wielomianową. Mimo jej powszechności w zastosowaniach rzadziej można spotkać w literaturze
jej szerszą analizę pod względem optymalnego stopnia wielomianu, jakości dopasowania oraz zdolności
predykcyjnych. W niniejszym opracowaniu wykorzystano różne metody w celu uzyskania statystycznej
pewności co do poprawności i praktycznej użyteczności opisywanego modelu.


