@ARTICLE{Wołczyński_W._Method_2017, author={Wołczyński, W. and Bydałek, A.W. and Holtzer, M. and Biernat, S.}, volume={vol. 17}, number={No 3}, journal={Archives of Foundry Engineering}, howpublished={online}, year={2017}, publisher={The Katowice Branch of the Polish Academy of Sciences}, abstract={A special Slag-Prop Cu database has been developed to archive data from laboratory and industrial tests related to post-reduction slags. In order to enrich the data areas, it was decided to design a system for measuring the temperature of the liquid slag and its viscosity. Objectives of research work are to gather information on the properties of post-slags such as the temperature of liquid slag and its viscosity. The discussed issues are especially important in the foundry practice. Designed research stand and using of database applications can greatly facilitate the work of metallurgists, foundrymen, technologists and scientists. The viscosity measurement was developed and presented earlier. The author's analytical methodology was supplemented by a thyristor measuring system (described in the article). The system temperature measurement can be performed simultaneously in 3 ways to reduce the measurement error. Measurement of the voltage mV - using the Seebeck effect can be measured throughout the entire range of thermocouple resistance, up to 1300 °C. Direct temperature measurement ⁰C - measurement only below 1000 ⁰C. Additional measurement - the measurement can also be read from the pyrometer set above the bath. The temperature and the reading frequency depend on the device itself. The principle of measurement is that in a molten metal / slag crucible, we put a N-type thermocouple. The thermocouples are hung by means of a tripod above the crucible and placed in a crucible. The thermocouple is connected to a compensating line dedicated to this type of thermocouple. The cable is in turn connected to a special multimeter that has the ability to connect to a computer and upload results. Temperature measurement can be performed simultaneously in 3 ways to reduce the measurement error. The Sn-Pb alloy has been subjected to testing for proper operation of the device. In this foot should be observed the supercooling of the liquid, which initiates the crystallization process and in which latent heat begins to exude raising the temperature until the coagulation temperature is reached.}, type={Artykuły / Articles}, title={Method and Apparatus for Assessing the Properties of Slags}, URL={http://ochroma.man.poznan.pl/Content/102039/PDF/afe-2017-0082.pdf}, doi={10.1515/afe-2017-0082}, keywords={Environmental protection, Innovative materials and casting technologies, Laboratory station, Slags, Slag-prop}, }