@ARTICLE{Mola_R._Characterization_2018, author={Mola, R. and Bucki, T.}, volume={vol.18}, number={No 2}, journal={Archives of Foundry Engineering}, howpublished={online}, year={2018}, publisher={The Katowice Branch of the Polish Academy of Sciences}, abstract={The study involved using the liquid-solid compound casting process to fabricate a lightweight ZE41/AlSi12 bimetallic material. ZE41 melt heated to 660 oC was poured onto a solid AlSi12 insert placed in a steel mold. The mold with the insert inside was preheated to 300 oC. The microstructure of the bonding zone between the alloys was examined using optical microscopy and scanning electron microscopy. The chemical composition was determined through linear and point analyses with an energy-dispersive X-ray spectroscope (EDS). The bonding zone between the magnesium and aluminum alloys was about 250 μm thick. The results indicate that the microstructure of the bonding zone changes throughout its thickness. The structural constituents of the bonding zone are: a thin layer of a solid solution of Al and Zn in Mg and particles of Mg-Zn-RE intermetallic phases (adjacent to the ZE41 alloy), a eutectic region (Mg17(Al,Zn)12 intermetallic phase and a solid solution of Al and Zn in Mg), a thin region containing fine, white particles, probably Al-RE intermetallic phases, a region with Mg2Si particles distributed over the eutectic matrix, and a region with Mg2Si particles distributed over the Mg-Al intermetallic phases matrix (adjacent to the AlSi12 alloy). The microstructural analysis performed in the length direction reveals that, for the process parameters tested, the bonding zone forming between the alloys was continuous. Low porosity was observed locally near the ZE41 alloy. The shear strength of the AZ91/AlSi17 joint varied from 51.3 to 56.1 MPa.}, type={Artykuły / Articles}, title={Characterization of the Bonding Zone in a ZE41/AlSi12 Joint Fabricated by Liquid-Solid Compound Casting}, URL={http://ochroma.man.poznan.pl/Content/106806/PDF/AFE%202_2018_37.pdf}, keywords={Innovative foundry technologies and materials, Compound casting process, magnesium alloy, aluminum alloy, Bonding zone}, }