@ARTICLE{Joachimiak_M._Optimal_2014, author={Joachimiak, M. and Ciałkowski, M.}, number={No 3 September}, journal={Archives of Thermodynamics}, pages={265-280}, howpublished={online}, year={2014}, publisher={The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences}, abstract={Inverse boundary problem for cylindrical geometry and unsteady heat conduction equation was solved in this paper. This solution was presented in a convolution form. Integration of the convolution was made assuming the distribution of temperature T on the integration interval (ti, ti+ Δt) in the form T (x, t) = T (x, ti) Θ + T (z, ti+ Δt) (1 - Θ), where Θ ϵ (0,1). The influence of value of the parameter Θ on the sensitivity of the solution to the inverse problem was analysed. The sensitivity of the solution was examined using the SVD decomposition of the matrix A of the inverse problem and by analysing its singular values. An influence of the thermocouple installation error and stochastic error of temperature measurement as well as the parameter Θ on the error of temperature distribution on the edge of the cylinder was examined.}, type={Artykuły / Articles}, title={Optimal choice of integral parameter in a process of solving the inverse problem for heat equation}, URL={http://ochroma.man.poznan.pl/Content/94656/mainfile.pdf}, keywords={inverse problem, sensitivity of solution, heat conduction}, }