Details

Title

Wrought Magnesium Alloys ZM21, ZW3 and WE43 Processed by Hydrostatic Extrusion with Back Pressure

Journal title

Archives of Metallurgy and Materials

Yearbook

2012

Issue

No 2 June

Authors

Divisions of PAS

Nauki Techniczne

Publisher

Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Committee of Materials Engineering and Metallurgy of Polish Academy of Sciences

Date

2012

Identifier

DOI: 10.2478/v10172-012-0050-3 ; e-ISSN 2300-1909

Source

Archives of Metallurgy and Materials; 2012; No 2 June

References

Bohlen J. (2005), null. ; Yang Z. (2008), Acta Metall, Sin. (Engl. Lett.), 21, 313. ; Slooff F. (2010), Hot workability analysis of extruded AZ magnesium alloys with processing maps, Materials Science and Engineering, A 527, 735. ; Rzychoń T. (2010), The influence of pouring temperature on the microstructure and fluidity of Elektron 21 and WE54 magnesium alloys, Archives of Metallurgy and Materials, 55, 1, 7. ; Kierzek A. (2011), Evaluation of susceptibility to hot cracking of magnesium alloy joints in variable stiffness condition, Archives of Metallurgy and Materials, 56, 3, 759, doi.org/10.2478/v10172-011-0084-y ; Chadwick G. (1972), Metallography and phase transformations. ; Blawert C. (2004), Automotive applications of magnesium and its alloys, Trans Indian Inst Met, 57, 4, 397. ; Medraj M. (2007), Analyse the importance of Magnesium-aluminium-strontium alloys for more fuel-efficient automobiles, Automotive, 45. ; Máthis K. (2005), J. Alloys Compd, 394, 194, doi.org/10.1016/j.jallcom.2004.10.050 ; McQueen H. (2000), The Minerals. ; Swiostek J. (2006), Mater. Sci. Eng, A 424, 223. ; H. L. I, D. Pugh, D. Green, MERL Plasticity Report No 147 (1958), National Engineering Laboratory, East Kilbride, Glasgow. ; Pugh H. (1963), null, 157. ; Chandrasekaran M. (2004), Mater. Sci. Eng, A 381, 308. ; Xia K. (2005), Mater. Sci. Eng, A 410-411, 324. ; Pachla W. (2011), Development of high strength pure magnesium and wrought magnesium alloys AZ31, AZ61 and AZ91 processed by hydrostatic extrusion with back pressure, International Journal of Materials Research (formerly Z. Metallkd.). ; (1970), Mechanical behaviour of materials under pressure. ; McQueen H. (1998), null, 201. ; Lapovok R. (2004), J. Mater. Process. Technol, 146, 408, doi.org/10.1016/j.jmatprotec.2003.12.003 ; Pachla W. (1982), Metal Science, 16, 519, doi.org/10.1016/0036-9748(82)90262-9 ; Elektron wrought alloys, Magnesium Elektron 441 <a target="_blank" href='http://www.magnesium-elektron.com'>www.magnesium-elektron.com</a> ; Papirov I. (2008), Biodegradable magnesium alloys for medical application, Functional Materials, 15, 1, 139. ; Staiger M. (2006), Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, doi.org/10.1016/j.biomaterials.2005.10.003 ; Hermawan H. (2010), Developments in metallic biodegradable stents, Acta Biomaterialia, 6, 1693, doi.org/10.1016/j.actbio.2009.10.006 ; Esnaola J. (2009), Determination of the optimum forming conditions for warm tube hydroforming of ZM21 magnesium alloy, J. Achievements in Materials and Manufacturing Engineering, 32, 2, 188.
×