Details Details PDF BIBTEX RIS Title Fuzzy Model of 16PSK and 16QAM Modulation Journal title International Journal of Electronics and Telecommunications Yearbook 2011 Volume vol. 57 Issue No 4 Authors Butkiewicz, Bohdan Divisions of PAS Nauki Techniczne Publisher Polish Academy of Sciences Committee of Electronics and Telecommunications Date 2011 Identifier DOI: 10.2478/v10177-011-0060-5 ; eISSN 2300-1933 (since 2013) ; ISSN 2081-8491 (until 2012) Source International Journal of Electronics and Telecommunications; 2011; vol. 57; No 4 References Proakis J. (2001), Digital Communication. ; Haykin S. (2009), Communication Systems. ; Fitz M. (2007), Communications Engineering. ; Butkiewicz B. (2006), Towards Fuzzy Fourier Transform, null, 2560. ; Butkiewicz B. (2008), An Approach to Theory of Fuzzy Signals Basic Definitions, IEEE Transactions on Fuzzy Systems, 16, 4, 982, doi.org/10.1109/TFUZZ.2008.924183 ; Butkiewicz B. (2006), Lecture Notes in Artificial Intelligence, 4029, 202. ; Butkiewicz B. (2007), Fuzzy analog and discrete time invariant systems, Proceedings of SPIE, 6937, 1. ; Butkiewicz B. (2007), Foundation of Fuzzy Logic and Soft Computing, 4529, 646, doi.org/10.1007/978-3-540-72950-1_64 ; Butkiewicz B. (2010), Artificial Intelligence and Soft Computing, 6113, 19, doi.org/10.1007/978-3-642-13208-7_3 ; B. S. Butkiewicz, "Fuzzy Model of QPSK and QAM Modulation," in <i>Emerging Intelligent Technologies in Industry</i>, D. Ryko, P. Gawrysiak, H. Rybinski, and M. Kryszkiewicz, Eds., 2011, pp. 297-305. ; Cousoa I. (2011), Higher order models for fuzzy random variables, Fuzzy Sets and Systems. ; Zadeh L. (1978), Fuzzy set as a basis for a theory of possibility, Fuzzy Sets and Systems, 1, 1, 3, doi.org/10.1016/0165-0114(78)90029-5 ; Sudkamp T. (1992), On probability-possibility transformations, Fuzzy Sets and Systems, 51, 73, doi.org/10.1016/0165-0114(92)90077-H ; Barry J. (2004), Digital Communication, doi.org/10.1007/978-1-4615-0227-2 ; Luca A. (1972), A definition of non probabilistic entropy in the setting of fuzzy set theory, Information and Control, 20, 301, doi.org/10.1016/S0019-9958(72)90199-4