Details Details PDF BIBTEX RIS Title Minimization of Maximum Errors in Universal Approximation of the Unit Circle by a Polygon Journal title Metrology and Measurement Systems Yearbook 2011 Issue No 3 Authors Borkowski, Józef Keywords Unit circle ; approximation by polygon ; LIDFT ; interpolated DFT ; zero padding Divisions of PAS Nauki Techniczne Coverage 391-402 Publisher Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation Date 2011 Type Artykuły / Articles Identifier DOI: 10.2478/v10178-011-0006-x ; ISSN 2080-9050, e-ISSN 2300-1941 Source Metrology and Measurement Systems; 2011; No 3; 391-402 References Marple S. (1987), Digital Spectral Analysis with Applications. ; Kay S. (1988), Modern Spectral Estimation: Theory and Application. ; Scharf L. (1991), Statistical Signal Processing: Detection, Estimation and Time Series Analysis. ; (1993), Handbook for Digital Signal Processing. ; Zygarlicki J. (2010), A reduced Prony's method in power-quality analysis-parameters selection, IEEE Trans. Power Del, 25, 2, 979, doi.org/10.1109/TPWRD.2009.2034745 ; Renders H. (1984), High-Accuracy Spectrum Analysis of Sampled Discrete Frequency Signals by Analytical Leakage Compensation, IEEE Trans. Instrum. Meas, 33, 4, 287, doi.org/10.1109/TIM.1984.4315226 ; Zakharov Y. (1999), Frequency estimator with dichotomous search of periodogram peak, Electronics Letters, 35, 19, 1608, doi.org/10.1049/el:19991133 ; Reisenfeld S. (2003), A New Algorithm for the Estimation of the Frequency of a Complex Exponential in Additive Gaussian Noise, IEEE Communications Letters, 7, 11, 549, doi.org/10.1109/LCOMM.2003.815637 ; Aboutanios E. (2005), Iterative Frequency Estimation by Interpolation on Fourier Coefficients, IEEE Transactions on Signal Processing, 53, 4, 1237, doi.org/10.1109/TSP.2005.843719 ; He B. (2005), Narrow-Band Frequency Analysis for Laser-Based Glass Thickness Measurement, IEEE Transactions on Instrumentation and Measurements, 54, 1, 222, doi.org/10.1109/TIM.2004.838911 ; Zivanovic M. (2001), Nonparametric Spectrum Interpolation Methods: A Comparative Study, IEEE Transactions on Instrumentation and Measurement, 50, 5, 1127, doi.org/10.1109/19.963171 ; Zivanovic M. (2002), Extending the limits of resolution for narrow-band harmonic and modal analysis: a non-parametric approach, Measurement Science and Technology, 13, 12, 2082, doi.org/10.1088/0957-0233/13/12/337 ; Porat B. (1996), A Course in Digital Signal Processing. ; Rabiner L. (1969), The chirp-z transform algorithm, IEEE Trans. on Audio and Electroacoustics, 17, 2, 86, doi.org/10.1109/TAU.1969.1162034 ; Aiello M. (2005), A Chirp-Z Transform-Based Synchronizer for Power System Measurements, IEEE Transactions on Instrumentation and Measurement, 54, 3, 1025, doi.org/10.1109/TIM.2005.847243 ; Sarkar I. (2006), The interlaced chirp Z transform, Signal Processing, 86, 2221, doi.org/10.1016/j.sigpro.2005.10.004 ; Duda K. (2009), Computation of the network harmonic impedance with Chirp-Z transform, Metrology and Measurement Systems, 16, 2, 299. ; Makur A. (2001), Warped Discrete-Fourier Transform: Theory and Applications, IEEE Transactions on Circuits and Systems - I: Fundamental Theory and Applications, 48, 9, 1086, doi.org/10.1109/81.948436 ; Franz S. (2003), Frequency estimation using warped discrete Fourier transform, Signal Processing, 83, 1661, doi.org/10.1016/S0165-1684(03)00079-3 ; Venkataramanan R. (2006), Estimation of frequency offset using warped discrete-Fourier transform, Signal Processing, 86, 250, doi.org/10.1016/j.sigpro.2005.05.035 ; Rife D. (1970), Use of the Discrete Fourier Transform in the Measurement of Frequencies and Levels of Tones, Bell System Technical Journal, 49, 197. ; Kamm G. (1978), Computer Fourier-transform techniques for precise spectrum measurements of oscillatory data with application to the de Haas-van Alphen effect, J. of App. Phys, 49, 12, 5951, doi.org/10.1063/1.324563 ; Jain V. (1979), High-Accuracy Analog Measurements via Interpolated FFT, IEEE Transactions on Instrumentation and Measurements, 28, 2, 113, doi.org/10.1109/TIM.1979.4314779 ; Grandke T. (1983), Interpolation Algorithms for Discrete Fourier Transforms of Weighted Signals, IEEE Transactions on Instrumentation and Measurement, 32, 350, doi.org/10.1109/TIM.1983.4315077 ; Andria G. (1989), Windows and Interpolation Algorithms to Improve Electrical Measurement Accuracy, IEEE Transactions on Instrumentation and Measurement, 38, 4, 856, doi.org/10.1109/19.31004 ; Offelli C. (1990), Interpolation Techniques for Real-Time Multifrequency waveform analysis, IEEE Transactions on Instrumentation and Measurement, 39, 1, 106, doi.org/10.1109/19.50426 ; Schoukens J. (1992), The Interpolated Fast Fourier Transform: A Comparative Study, IEEE Transactions on Instrumentation and Measurement, 41, 2, 226, doi.org/10.1109/19.137352 ; Quinn B. (1994), Estimating Frequency by Interpolation Using Fourier Coefficients, IEEE Transactions on Signal Processing, 42, 5, 1264, doi.org/10.1109/78.295186 ; Quinn B. (1997), Estimating of Frequency, Amplitude, and Phase from the DFT of a Time Series, IEEE Transactions on Signal Processing, 45, 3, 814, doi.org/10.1109/78.558515 ; Macleod M. (1998), Fast Nearly ML Estimation of the Parameters of Real or Complex Single Tones or Resolved Multiple Tones, IEEE Transactions on Signal Processing, 46, 1, 141, doi.org/10.1109/78.651200 ; Sedlacek M. (1998), Interpolations in frequency and time domains used in FFT spectrum analysis, Measurement, 23, 185, doi.org/10.1016/S0263-2241(98)00031-1 ; Santamaria I. (2000), A Comparative Study of High-Accuracy Frequency Estimation Methods, Mechanical Systems and Signal Processing, 14, 5, 819, doi.org/10.1006/mssp.2000.1321 ; Borkowski J. (2000), LIDFT - the DFT linear interpolation method, IEEE Trans. Instrum. Meas, 49, 4, 741, doi.org/10.1109/19.863917 ; Borkowski J. (2000), Application of the discrete Fourier transform linear interpolation method in the measurement of volume scattering function at small angle, Optical Eng, 39, 6, 1576, doi.org/10.1117/1.602532 ; Borkowski J. (2002), Metrological analysis of the LIDFT method, IEEE Transactions on Instrumentation and Measurement, 51, 1, 67, doi.org/10.1109/19.989903 ; Agrež D. (2002), Weighted Multipoint Interpolated DFT to Improve Amplitude Estimation of Multifrequency Signal, IEEE Transactions on Instrumentation and Measurement, 51, 2, 287, doi.org/10.1109/19.997826 ; Liguori C. (2007), IFFTC-Based Procedure for Hidden Tone Detection, IEEE Transactions on Instrumentation and Measurements, 56, 1, 133, doi.org/10.1109/TIM.2006.887774 ; Belega D. (2008), Frequency estimation via weighted multipoint interpolated DFT, IET Science, Measurement and Technology, 2, 1, 1. ; Chen K. (2008), Combining the Hanning windowed interpolated FFT in both directions, Computer Physics Communications, 178, 924, doi.org/10.1016/j.cpc.2008.02.008 ; Li Y. (2008), Eliminating the picket fence effect of the fast Fourier transform, Computer Physics Communications, 178, 486, doi.org/10.1016/j.cpc.2007.11.005 ; Belega D. (2009), Multifrequency signal analysis by Interpolated DFT method with maximum sidelobe decay windows, Measurement, 42, 420, doi.org/10.1016/j.measurement.2008.08.006 ; Yang X. (2009), Optimally averaging the interpolated fast Fourier transform in both directions, IET Science, Measurement and Technology, 3, 2, 137, doi.org/10.1049/iet-smt:20080067 ; Chen K. (2009), Against the long-range spectral leakage of the cosine window family, Computer Physics Communications, 180, 904, doi.org/10.1016/j.cpc.2008.12.019 ; Chen K. (2010), Composite Interpolated Fast Fourier Transform With the Hanning Window, IEEE Transactions on Instrumentation and Measurement, 59, 6, 1571, doi.org/10.1109/TIM.2009.2027772 ; Borkowski J. (2010), LIDFT method with classic data windows and zero padding in multifrequency signal analysis, Measurement, 43, 1595, doi.org/10.1016/j.measurement.2010.09.001 ; Duda K. (2010), DFT Interpolation Algorithm for Kaiser-Bessel and Dolph-Chebyshev Windows, IEEE Transactions on Instrumentation and Measurement, 60, 3, 784, doi.org/10.1109/TIM.2010.2046594 ; Harris F. (1978), On the use of windows for harmonic analysis with the Discrete Fourier Transform, Proceedings of the IEEE, 66, 1, 51, doi.org/10.1109/PROC.1978.10837 ; Mroczka J. (2009), Inverse problems formulated in terms of first-kind Fredholm integral equations in indirect measurements, Metrology and Measurement Systems, 16, 3, 333. ; M Szmajda (2010), Gabor transform, spwvd, gabor-wigner transform and wavelet transform - tools for power quality monitoring, Metrology and Measurement Systems, 17, 3, 383, doi.org/10.2478/v10178-010-0032-6