Details Details PDF BIBTEX RIS Title Frequency and Damping Estimation Methods - An Overview Journal title Metrology and Measurement Systems Yearbook 2011 Issue No 4 Authors Zieliński, Tomasz ; Duda, Krzysztof Keywords damped sinusoids ; frequency estimation ; damping estimation ; linear prediction ; subspace methods ; interpolated DFT Divisions of PAS Nauki Techniczne Coverage 505-528 Publisher Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation Date 2011 Type Artykuły / Articles Identifier DOI: 10.2478/v10178-011-0051-y ; ISSN 2080-9050, e-ISSN 2300-1941 Source Metrology and Measurement Systems; 2011; No 4; 505-528 References <a target="_blank" href='http://en.wikipedia.org/wiki/Oscillation#Electrical'>http://en.wikipedia.org/wiki/Oscillation#Electrical</a> ; Sedlacek M. (2011), Active power measurements - an overview and comparison of DSP algorithms by noncoherent sampling, Metrol. Meas. Syst, 18, 2, 173, doi.org/10.2478/v10178-011-0001-1 ; Ramos P. (2010), Comparative analysis of three algorithms for two-channel common frequency sinewave parameter estimation: ellipse fit, seven parameter sine fit and spectral sinc fit, Metrol. Meas. Syst, 17, 2, 255, doi.org/10.2478/v10178-010-0022-8 ; Source codes of all Matlab programs tested in this paper: <a target="_blank" href='http://kt.agh.edu.pl/~tzielin/papers/M&MS-2011/'>http://kt.agh.edu.pl/~tzielin/papers/M&MS-2011/</a> ; Pintelon R. (2001), System Identification: A Frequency Domain Approach, doi.org/10.1002/0471723134 ; Magalas L. (2006), Determination of the logarithmic decrement in mechanical spectroscopy, Solid State Phenomena, 115, 7, doi.org/10.4028/www.scientific.net/SSP.115.7 ; Duda K. (2011), DFT-based Estimation of Damped Oscillation Parameters in Low-frequency Mechanical Spectroscopy, IEEE Trans. Instrum. Meas, 60, 11, 3608, doi.org/10.1109/TIM.2011.2113124 ; Radil T. (2009), New Spectrum Leakage Correction Algorithm for Frequency Estimation of Power System Signals, IEEE Trans. Instrum. Meas, 58, 5, 1670, doi.org/10.1109/TIM.2009.2014506 ; Duda K. (2011), Fourier-Based Estimation of Line Spectra. ; Andria G. (1989), Windows and interpolation algorithms to improve electrical measurement accuracy, IEEE Trans. Instrum. Meas, 38, 856, doi.org/10.1109/19.31004 ; Duda K. (2011), DFT Interpolation Algorithm for Kaiser-Bessel and Dolph-Chebyshev Windows, IEEE Trans. Instrum. Meas, 60, 3, 784, doi.org/10.1109/TIM.2010.2046594 ; Oppenheim A. (1997), Signals & Systems. ; Oppenheim A. (1999), Discrete-Time Signal Processing. ; Poularikas A. (1985), Signals and Systems. ; Agneni A. (1989), Damping measurements from truncated signals via Hilbert transform, Mechanical Systems and Signal Processing, 3, 1, 1, doi.org/10.1016/0888-3270(89)90019-8 ; Laila D. (2009), Nonlinear damping computation and envelope detection using Hilbert transform and its application to power systems wide area monitoring, IEEE Power & Energy Society General Meeting, 1-7, doi.org/10.1109/PES.2009.5275889 ; Magalas L. (2003), Measurement Techniques for Logarithmic Decrement, Solid State Phenomena, 89, 247, doi.org/10.4028/www.scientific.net/SSP.89.247 ; Messina A. (2006), Interpretation and Visualization of Wide-Area PMU Measurements Using Hilbert Analysis, IEEE Trans. Power Systems, 21, 4, 1763, doi.org/10.1109/TPWRS.2006.881153 ; Shin K. (2007), Fundamentals of Signal Processing for Sound and Vibration. ; Zieliński T. (2005), Digital Signal Processing: From Theory To Applications. ; Proakis J. (1992), Digital Signal Processing: Principles, Algorithms, Applications. ; Golub G. (1996), Matrix Computation. ; Steiglitz K. (1965), A technique for identification of linear systems, IEEE Trans. Automatic Control, 10, 461, doi.org/10.1109/TAC.1965.1098181 ; McClellan J. (1991), Exact Equivalence of the Steiglitz-McBride Iteration and IQLM, IEEE Trans. Signal Processing, 39, 2, 509, doi.org/10.1109/78.80841 ; Moon T. (1999), Mathematical Methods and Algorithms for Signal Processing. ; Kumaresan R. (1982), Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise, IEEE Trans. Acoust. Speech Signal Processing, ASSP-30, 837. ; J. Van Beek (2007), Software from http://matnmr.sourceforge.net/. matNMR: a flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab, J. Magn. Res, 187, 19, doi.org/10.1016/j.jmr.2007.03.017 ; Rahman M. (1987), Total least squares approach for frequency estimation using linear prediction, IEEE Trans. Acoustics. Speech Signal Processing, 35, 10, 1440, doi.org/10.1109/TASSP.1987.1165059 ; Hua Y. (1990), Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoid in noise, IEEE Trans. Acoustics. Speech Signal Processing, 38, 5, 814, doi.org/10.1109/29.56027 ; Sarkar T. (1995), Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials, IEEE Antennas and Propagation Magazine, 37, 1, 48, doi.org/10.1109/74.370583 ; Li Y. (1997), A Parameter estimation Scheme for Damped Sinusoidal Signals Based on Low-Rank Hankel Approximation, IEEE Trans. Signal Process, 45, 2, 481, doi.org/10.1109/78.554314 ; Razavilar J. (1998), A structured low-rank matrix pencil for spectral estimation and system identification, Signal Processing (Elsevier), 65, 363, doi.org/10.1016/S0165-1684(97)00232-6 ; Ruiz D. (1995), Parameter Estimation of Exponentially Damped Sinusoids Using a Higher Order Correlation-Based Approach, IEEE Trans. on Signal Processing, 43, 11, 2665, doi.org/10.1109/78.482116 ; Allu, G. K. (2003). Estimating the parameters of exponentially damped sinusoids in noise. University of Rhode Island, Technical Report <a target="_blank" href='http://www.ele.uri.edu/~gopi/report.pdf'>http://www.ele.uri.edu/~gopi/report.pdf</a> ; Kay S. (1988), Modern Spectral Estimation: Theory and Applications. ; Kay S. (1981), Spectrum Analysis - A Modern Perspective, Proc. of IEEE, 69, 11, 1380, doi.org/10.1109/PROC.1981.12184 ; Marple S. (1987), Digital Spectral Analysis with Applications. ; Hayes M. (1996), Statistical Digital Signal Processing and Modeling. ; Lobos T. (2006), High-Resolution Spectrum-Estimation Methods for Signal Analysis in Power Systems, IEEE Trans. Instrum. Meas, 55, 1, 219, doi.org/10.1109/TIM.2005.862015 ; Cooley J. (1965), An Algorithm for the Machine Computation of Complex Fourier Series, Mathematics of Computation, 19, 297, doi.org/10.1090/S0025-5718-1965-0178586-1 ; Jacobsen E. (2003), The sliding DFT, IEEE Signal Processing Mag, 20, 2, 74, doi.org/10.1109/MSP.2003.1184347 ; Duda K. (2010), Accurate, Guaranteed-Stable, Sliding DFT, IEEE Signal Processing Mag, 124-127. ; Borkowski D. (2009), Improvement of accuracy of power system frequency analysis by coherent resampling, IEEE Trans. Power Delivery, 24, 2, 1004, doi.org/10.1109/TPWRD.2009.2013662 ; Harris F. (1978), On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE, 66, 51, doi.org/10.1109/PROC.1978.10837 ; Bertocco M. (1994), Analysis of damped sinusoidal signals via a frequency-domain interpolation algorithm, IEEE Trans. Instrum. Meas, 43, 2, 245, doi.org/10.1109/19.293428 ; Yoshida Y. (1981), Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum, 14, 1201, doi.org/10.1088/0022-3735/14/10/024 ; Jain V. (1979), High-Accuracy Analog Measurements via Interpolated FFT, IEEE Trans. Instrum. Meas, Im-28, 2, 113, doi.org/10.1109/TIM.1979.4314779 ; Grandke T. (1983), Interpolation Algorithms for Discrete Fourier Transforms of Weighted Signals, IEEE Trans. Instrum. Meas, Im-32, 2, 350, doi.org/10.1109/TIM.1983.4315077 ; Agrež D. (2002), Weighted Multipoint Interpolated DFT to Improve Amplitude Estimation of Multifrequency Signal, IEEE Trans. Instrum. Meas, 51, 287, doi.org/10.1109/19.997826 ; Offelli C. (1990), Interpolation Techniques for Real-Time Multifrequency Waveform Analysis, IEEE Trans. Instrum. Meas, 39, 1, 106, doi.org/10.1109/19.50426 ; Borkowski J. (2000), LIDFT—The DFT Linear Interpolation Method, IEEE Trans. Instrum. Meas, 49, 4, 741, doi.org/10.1109/19.863917 ; Borkowski J. (2002), Metrological Analysis of the LIDFT Method, IEEE Trans. Instrum. Meas, 51, 1, 67, doi.org/10.1109/19.989903 ; Agrež D. (2009), A frequency domain procedure for estimation of the exponentially damped sinusoids, null. ; Kay S. (1993), Fundamentals of Statistical Signal Processing: Estimation Theory. ; Yao Y. (1995), Cramér-Rao lower bounds for a damped sinusoidal process, IEEE Trans. Signal Process, 43, 4, 878, doi.org/10.1109/78.376840 ; Duda K. (2011), Tracking performance of digital sinusoidal signals using adaptive filters, Electrical review, 1, 140.