Details

Title

Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes

Journal title

Archives of Thermodynamics

Yearbook

2010

Issue

No 2 July

Authors

Keywords

mathematical model ; transient state ; Solar collector ; Exact solution

Divisions of PAS

Nauki Techniczne

Coverage

45-62

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2010

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10173-010-0008-7

Source

Archives of Thermodynamics; 2010; No 2 July; 45-62

References

Goswami D. (2004), New and emerging developments in solar energy, Solar Energy, 76, 33. ; Fan J. (2007), Flow distribution in a solar collector panel with horizontally inclined absorber strips, Solar Energy, 81, 1501. ; Burch J. (2004), Simulation of an unglazed collector system for domestic hot water and space heating and cooling, Solar Energy, 77, 399. ; Zueva G. (2001), Mathematical model of heat transfer in a solar collector and its experimental validation, Theoretical Foundations of Chemical Engineering, 35, 6, 604. ; Razavi J. (2003), Rate of heat transfer in polypropylene tubes in solar water heaters, Solar Energy, 74, 441. ; Morrison G. (2004), Water-in-glass evacuated tube solar collectors, Solar Energy, 76, 135. ; Augustus M. (2007), Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors, Solar Energy, 81, 62. ; Duffie J. (1991), Solar Engineering of Thermal Processes. ; Weitbrecht V. (2002), Flow distribution in solar collectors with laminar flow conditions, Solar Energy, 73, 433. ; Wang X. (1990), Analysis and performance of flat-plate solar collector arrays, Solar Energy, 45, 2, 71. ; Karatasou S. (2006), On the calculation of solar utilizability for south oriented flat plate collectors tilted to an angle equal to the local latitude, Solar Energy, 80, 1600. ; Pluta Z. (2000), Fundamentals of Solar Energy Thermal Conversion. ; Gerald C. (1994), Applied numerical analysis. ; Serov E. (1981), Dynamics of steam generators.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×