Details
Title
Investigations on heat and momentum transfer in CuO-water nanofluidJournal title
Archives of ThermodynamicsYearbook
2015Issue
No 2 JuneAuthors
Keywords
nanofluids ; fluid mechanics ; heat transferDivisions of PAS
Nauki TechniczneCoverage
49-59Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2015[2015.01.01 AD - 2015.12.31 AD]Type
Artykuły / ArticlesIdentifier
DOI: 10.1515/aoter-2015-0014Source
Archives of Thermodynamics; 2015; No 2 June; 49-59References
Cieśliński (2014), Pool boiling of nanofluids on rough and porous coated tubes : experimental and correlation, Arch Termodyn, 2, 3. ; Pak (1997), Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp Heat Transfer, 11, 151, doi.org/10.1080/08916159808946559 ; Buongiorno (2006), Convective transport in nanofluids Heat Transfer, ASME, 128. ; Fotukian (2010), Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO / water nanofluid inside a circular tube, Int Commun Heat Mass, 37. ; Wang (2007), Heat transfer characteristics of nanofluids, review Int J Thermal Sci, 1, doi.org/10.1016/j.ijthermalsci.2006.06.010 ; Gnielinski (2009), Heat transfer coefficients for turbulent flow in concentric annular ducts, Heat Transfer Eng, 431, doi.org/10.1080/01457630802528661 ; Li (2009), A review on development of nanofluid preparation and characterization, Powder Technol, 196. ; Hojjat (2011), Convective heat transfer of non - Newtonian nanofluids through a uniformly heated circular tube, Int J Thermal Sci, 525, doi.org/10.1016/j.ijthermalsci.2010.11.006 ; Kulkarni (2009), Application of nanofluids in heating buildings and reducing pollution, Appl Energ, 2566, doi.org/10.1016/j.apenergy.2009.03.021 ; Choi (1995), Enhancing thermal conductivity of fluids with nanoparticles FED, ASME, 231. ; Karthikeyan (2008), Effect of clustering on the thermal conductivity of nanofluids, Mat Chem Phys, 50, doi.org/10.1016/j.matchemphys.2007.10.029 ; Meibodi (2010), An estimation for velocity and temperature profiles of nanofluids in fully developed turbulent flow conditions, Int Commun Heat Mass, 37. ; Duangthongsuk (2010), An experimental study on the heat transfer performance and pressure drop of TiO - water nanofluids flowing under a turbulent flow regime, Int J Heat Mass Tran, 334, doi.org/10.1016/j.ijheatmasstransfer.2009.09.024 ; Pantzali (2009), Investigating the efficacy of nanofluids as coolants in plate heat exchangers, Chem Eng Sci, 3290, doi.org/10.1016/j.ces.2009.04.004 ; Kostic (1994), On turbulent drag and heat transfer reduction phenomena and heat transfer enhancement in non - circular duct flow of certain non - Newtonian fluids, Int J Heat Mass Tran, 133, doi.org/10.1016/0017-9310(94)90017-5 ; Leitner (1300), Heat capacity of CuO in the temperature range of, Thermochim Acta, 15, 348. ; Pantzali (2009), Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int J Heat Fluid Fl, 691, doi.org/10.1016/j.ijheatfluidflow.2009.02.005 ; Buongiorno (2009), A benchmark study on the thermal conductivity of nanofluids, Appl Phys, 094312, doi.org/10.1063/1.3245330 ; Ding (2006), Heat transfer of aqueous suspensions of carbon nanotubes, Int J Heat Mass Tran, 240, doi.org/10.1016/j.ijheatmasstransfer.2005.07.009 ; Yoo (1997), Post - critical heat flux swirl flow heat transfer with two refrigerants and water, Thermophys Heat Tr, 189, doi.org/10.2514/2.6251 ; Ko (2007), An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube, Int J Heat Mass Tran, 4749, doi.org/10.1016/j.ijheatmasstransfer.2007.03.029Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China