Details
Title
Evaluation method of single blow experiment for the determination of heat transfer coefficient and dispersive Peclet numberJournal title
Archives of ThermodynamicsYearbook
2015Issue
No 4 DecemberAuthors
Keywords
heat exchanger ; single blow experiment ; evaluation method ; dispersion modelDivisions of PAS
Nauki TechniczneCoverage
3-24Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2015[2015.01.01 AD - 2015.12.31 AD]Type
Artykuły / ArticlesIdentifier
DOI: 10.1515/aoter-2015-0029Source
Archives of Thermodynamics; 2015; No 4 December; 3-24References
LuoX (2001), The single - blow transient testing technique considering longitudinal core conduction and fluid dispersion Heat Transfer, Mass, 121. ; HeggsP (1988), Single - blow experimental prediction of heat transfer coefficients a comparison of four commonly used techniques, Exp Therm Fluid Sci, 1, 243, doi.org/10.1016/0894-1777(88)90003-9 ; RoetzelW (2003), On the application of the Wilson plot technique Heat, Technol, 21, 125. ; RoetzelW (2012), Evaluation of residence time measurements on heat exchangers for the determination of dispersive Peclet numbers In th on Heat Transfer and Renewable Sources of Revised and extended version : Arch, Proc Int Symp Energy Thermodyn, 14, 219, doi.org/10.2478/aoter-2014-0016(accessedonDec.2014) ; RoetzelW (2011), New axial dispersion model for heat exchanger design Heat Transfer, Mass, 1009. ; RoetzelW (1999), Dynamic behaviour of heat exchangers WIT, Mech. ; Wärmeatlas (2013), VDI, Auflage, 11. ; NaRanongC (2012), Unity Mach number axial dispersion model for heat exchanger design th European Thermal Sciences Conf In http dx doi org, Phys Conf Ser, 6, doi.org/10.1088/1742-6596/395/1/012052Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China