Details
Title
Vapordynamic thermosyphon – heat transfer two-phase device for wide applicationsJournal title
Archives of ThermodynamicsYearbook
2015Issue
No 4 DecemberAuthors
Keywords
thermosyphon ; vapordynamic thermosyphon ; long horizontal condenser ; porous coating ; heat transfer intensificationDivisions of PAS
Nauki TechniczneCoverage
65-76Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2015[2015.01.01 AD - 2015.12.31 AD]Type
Artykuły / ArticlesIdentifier
DOI: 10.1515/aoter-2015-0033Source
Archives of Thermodynamics; 2015; No 4 December; 65-76References
GarnerS (2001), Loop thermosyphons and their applications to high density electronics cooling The Pacific Rim ASME Int Electronic Packaging Techn Hawaii, Conf, 01. ; KhodabandehR (2005), Pressure drop in riser and evaporator in an advanced two - phase thermosyphon loop, Int J Refrig, 28, 725, doi.org/10.1016/j.ijrefrig.2004.12.003 ; VasilievL (2012), Heat transfer enhancement in mini channels with micro / nano particles deposited on a heat - loaded wall, Enhanc Heat Transf, 19, 13, doi.org/10.1615/JEnhHeatTransf.2011003350 ; VasilievL (2004), Vaporization heat transfer in porous wicks of evaporators, Arch Thermodyn, 25, 47. ; PossamaiF (2009), Miniature heat pipe as compressor cooling devices, Appl Therm Eng, 29, 3218, doi.org/10.1016/j.applthermaleng.2009.04.030 ; AliakhnovichV (2011), Cooling system for hermetic compressor based on the loop thermosyphon In th Minsk Int Heat Pipes , Heat Pumps Refrigerators, Proc Power Sources, 9, 101. ; KhrustalevD (2002), Loop thermosyphons for cooling of electronics In th Semi - therm Symposium, Proc, 18, 145. ; MilanezF (2010), Heat transfer limit due to pressure drop of a two - phase loop thermosyphon Heat Pipe, Sci Technol, 1, 237. ; DubeV (2004), The effects of non - condensable gases on the performance of loop thermosyphon heat exchangers, Appl Therm Eng, 24, 2439, doi.org/10.1016/j.applthermaleng.2004.02.013Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China