Details Details PDF BIBTEX RIS Title Wrong transition and measurement models in power system state estimation Journal title Archives of Electrical Engineering Yearbook 2016 Volume vol. 65 Issue No 3 September Authors Kozierski, Piotr ; Horla, Dariusz ; Lis, Marcin Keywords particle filter ; estimation quality ; Population Monte Carlo Divisions of PAS Nauki Techniczne Coverage 559-574 Publisher Polish Academy of Sciences Date 2016 Type Artykuły / Articles Identifier DOI: 10.1515/aee-2016-0040 ; ISSN: 1427-4221 ; eISSN: 2300-2506 Source Archives of Electrical Engineering; 2016; vol. 65; No 3 September; 559-574 References Šmídl (2013), Adaptive Importance Sampling in Particle Filtering th on Information Fusion pp, Proc Int FUSION, 16. ; Huang (2007), Feasibility Studies of Applying Kalman Filter Techniques to Power System Dynamic State Estimation In Power Engineering Conference, Proc, 376. ; Kozierski (2014), Particle Filter in Power System State Estimation - Large Measurements Errors th on Advances in Applied Electrical Engineering pp, Proc Nat PES, 16, 157. ; Janiszewski (2014), Particle Filter Approach for Permanent Magnet Synchronous Motor State Estimation, Przeglad Elektrotechniczny, 90, 56. ; Cappe (null), Population Monte Carlo of Computational and Graphical Statistics, Journal, doi.org/10.1198/106186004X12803,13(4):907-929(2004) ; Schön (2011), System Identification of Nonlinear State - space Models, Automatica, 47, 39, doi.org/10.1016/j.automatica.2010.10.013