Details
Title
An influence of parameters of micro-electrical discharge machining on wear of tool electrodeJournal title
Archive of Mechanical EngineeringYearbook
2017Volume
vol. 64Issue
No 2Affiliation
Puthumana, Govindan : Technical University of Denmark, Lyngby, DenmarkAuthors
Keywords
Micro-EDM ; tool wear ratio ; process inputs ; statistical methods ; main effects ; interactions ; regression analysisDivisions of PAS
Nauki TechniczneCoverage
149-163Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] L. Tang and Y.F. Guo. Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel. The International Journal of Advanced Manufacturing Technology, 70(5-8):1369–1376, 2014. doi: 10.1007/s00170-013-5380-4.[2] V.K. Meena and M.S. Azad. Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Materials and Manufacturing Processes, 27(9):973–977, 2012. doi: 10.1080/10426914.2011.610080.
[3] S.P. Sivapirakasam, J. Mathew, and M. Surianarayanan. Multi-attribute decision making for green electrical discharge machining. Expert Systems with Applications, 38(7):8370–8374, 2011. doi: 10.1016/j.eswa.2011.01.026.
[4] T. Muthuramalingam and B. Mohan. Influence of discharge current pulse on machinability in electrical discharge machining. Materials and Manufacturing Processes, 28(4):375–380, 2013. doi: 10.1080/10426914.2012.746700.
[5] Y.H. Guu, C.Y. Chou, and S.-T. Chiou. Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of Fe-Mn-Al alloy. Materials and Manufacturing Processes, 20(6):905–916, 2005. doi: 10.1081/AMP-200060412.
[6] B. Jabbaripour, M.H. Sadeghi, Sh. Faridvand, and M.R. Shabgard. Investigating the effects of EDM parameters on surface integrity, MRR and TWR in machining of Ti–6Al–4V. Machining Science and Technology, 16(3):419–444, 2012.
[7] R. Mukherjee and S. Chakraborty. Selection of EDM process parameters using biogeography based optimization algorithm. Materials and Manufacturing Processes, 27(9):954–962, 2012. doi: 10.1080/10426914.2011.610089.
[8] S.S. Agrawal and V. Yadava. Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites. Materials and Manufacturing Processes, 28(4):381–389, 2013. doi: 10.1080/10426914.2013.763678.
[9] M.Ch. Panda and V. Yadava. Intelligent modeling and multiobjective optimization of die sinking electrochemical spark machining process. Materials and Manufacturing Processes, 27(1):10–25, 2012. doi: 10.1080/10426914.2010.544812.
[10] V.V. Reddy, A. Kumar, P.M. Valli, and C.S. Reddy. Influence of surfactant and graphite powder concentration on electrical discharge machining of PH17-4 stainless steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(2):641–655, 2015. doi: 10.1007/s40430-014-0193-4.
[11] B. Jabbaripour, M.H. Sadeghi, M.R. Shabgard, and H. Faraji. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of -TiAl intermetallic. Journal of Manufacturing Processes, 15(1):56–68, 2013. doi: 10.1016/j.jmapro.2012.09.016.
[12] A. Bhattacharya, A. Batish, and N. Kumar. Surface characterization and material migration during surface modification of die steels with silicon, graphite and tungsten powder in EDM process. Journal of Mechanical Science and Technology, 27(1):133–140, 2013. doi: 10.1007/s12206-012-0883-8.
[13] M.P. Jahan,Y.S.Wong, and M. Rahman. Acomparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). The International Journal of Advanced Manufacturing Technology, 46(9-12):1145–1160, 2010. doi: 10.1007/s00170-009-2167-8.
[14] H.S. Lim, Y.S. Wong, M. Rahman, and M.K.E. Lee. A study on the machining of high aspect ratio micro-structures using micro-EDM. Journal of Materials Processing Technology, 140(1):318–325, 2003. doi: 10.1016/S0924-0136(03)00760-X.
[15] M.P. Jahan, Y.S. Wong, and M. Rahman. A comparative study of transistor and RC pulse generators for micro-EDM of tungsten carbide. International Journal of Precision Engineering and Manufacturing, 9(4):3–10, 2008.
[16] H.S. Liu, B.H. Yan, F.Y. Huang, and K.H. Qiu. A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. Journal of Materials Processing Technology, 169(3):418–426, 2005. doi: 10.1016/j.jmatprotec.2005.04.084.
[17] F. Han, S. Wachi, and M. Kunieda. Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precision Engineering, 28(4):378–385, 2004. doi: 10.1016/j.precisioneng.2003.11.005.
[18] F.L. Amorim and W.L. Weingaertner. The influence of generator actuation mode and process parameters on the performance of finish EDM of a tool steel. Journal of Materials Processing Technology, 166(3):411–416, 2005. doi: 10.1016/j.jmatprotec.2004.08.026.
[19] Y.S. Wong, M. Rahman, H.S. Lim, H. Han, and N. Ravi. Investigation of micro-EDM material removal characteristics using single RC-pulse discharges. Journal of Materials Processing Technology, 140(1):303–307, 2003. doi: 10.1016/S0924-0136(03)00771-4.
[20] N. Natarajan and P. Suresh. Experimental investigations on the microhole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. T he International Journal of Advanced Manufacturing Technology, 77(9-12):1741–1750, 2015. doi: 10.1007/s00170-014-6494-z.
[21] D.J. Kim, S.M. Yi, Y.S. Lee, and C.N. Chu. Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration. Journal of Micromechanics and Microengineering, 16(5):1092, 2006. http://stacks.iop.org/0960-1317/16/i=5/a=031.
[22] Y. Li, M. Guo, Z. Zhou, and M. Hu. Micro electro discharge machine with an inchworm type of micro feed mechanism. Precision Engineering, 26(1):7–14, 2002. doi: 10.1016/S0141-6359(01)00088-5.
[23] J. Ramkumar, N. Glumac, S.G. Kapoor, and R.E. DeVor. Characterization of plasma in micro-EDM discharge using optical spectroscopy. Journal of Manufacturing Processes, 11(2):82–87, 2009. doi: 10.1016/j.jmapro.2009.10.002.
[24] K.P. Maity and R.K. Singh. An optimisation of micro-EDM operation for fabrication of microhole. The International Journal of Advanced Manufacturing Technology, pages 1–9, 2012. doi: 10.1007/s00170-012-4098-z.
[25] M.S. Azad and A.B. Puri. Simultaneous optimisation of multiple performance characteristics in micro-EDM drilling of titanium alloy. The International Journal of Advanced Manufacturing Technology, 61(9-12):1231–1239, 2012. doi: 10.1007/s00170-012-4099-y.
[26] B.B. Pradhan, M. Masanta, B.R. Sarkar, and B. Bhattacharyya. Investigation of electro-discharge micro-machining of titanium super alloy. The International Journal of Advanced Manufacturing Technology, 41(11-12):1094, 2009. doi: 10.1007/s00170-008-1561-y.
[27] H.S. Liu, B.H. Yan, F.Y. Huang, and K.H. Qiu. A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. J ournal of Materials Processing Technology, 169(3):418–426, 2005. doi: 10.1016/j.jmatprotec.2005.04.084.
[28] F.L. Amorim and W.L. Weingaertner. The influence of generator actuation mode and process parameters on the performance of finish EDM of a tool steel. Journal of Materials Processing Technology, 166(3):411–416, 2005. doi: 10.1016/j.jmatprotec.2004.08.026.
[29] U. Natarajan, X.H. Suganthi, and P.R. Periyanan. Modeling and multiresponse optimization of quality characteristics for the micro-EDM drilling process. Transactions of the Indian Institute of Metals, 69(9):1675–1686, 2016. doi: 10.1007/s12666-016-0828-5.
[30] M.A.Ahsan Habib and M. Rahman. Performance analysis ofEDMelectrode fabricated by localized electrochemical deposition for micro-machining of stainless steel. The International Journal of Advanced Manufacturing Technology, 49(9-12):975–986, 2010. doi: 10.1007/s00170-009-2479-8.
[31] F.T. Weng, R.F. Shyu, and C.S. Hsu. Fabrication of micro-electrodes by multi-EDM grinding process. Journal of Materials Processing Technology, 140(1):332–334, 2003. doi: 10.1016/S0924-0136(03)00748-9.
[32] K. Takahata, N. Shibaike, and H. Guckel. High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM. Microsystem Technologies, 6(5):175–178, 2000. doi: 10.1007/s005420000052.
[33] T.Y. Tai, T. Masusawa, and H.T. Lee. Drilling microholes in hot tool steel by using microelectro discharge machining. Materials Transactions, 48(2):205–210, 2007. doi: 10.2320/matertrans.48.205.
[34] D.D. DiBitonto, P.T. Eubank, M.R. Patel, and M.A. Barrufet. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. Journal of Applied Physics, 66(9):4095–4103, 1989. doi: 10.1063/1.343994.
[35] P. Govindan and S.S. Joshi. Experimental characterization of material removal in dry electrical discharge drilling. International Journal of Machine Tools and Manufacture, 50(5):431–443, 2010. doi: 10.1016/j.ijmachtools.2010.02.004.
[36] S. Joshi, P. Govindan, A. Malshe, and K. Rajurkar. Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Annals-Manufacturing Technology, 60(1):239–242, 2011. doi: 10.1016/j.cirp.2011.03.114.
[37] P. Govindan, A. Gupta, S.S. Joshi, A. Malshe, and K.P. Rajurkar. Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM. J ournal of Materials Processing Technology, 213(7):1048–1058, 2013. doi: 10.1016/j.jmatprotec.2013.01.016.
[38] D.C. Montgomery. Design and Analysis of Experiments. JohnWiley & Sons, New York, 2008.