Details Details PDF BIBTEX RIS Title An Inverse Method to Obtain Porosity, Fibre Diameter and Density of Fibrous Sound Absorbing Materials Journal title Archives of Acoustics Yearbook 2011 Volume vol. 36 Issue No 3 Authors Alba, Jesus ; del Rey, Romina ; Ramis, Jaime ; Arenas, Jorge Keywords sound absorption ; fibrous materials ; porous material ; material characterization Divisions of PAS Nauki Techniczne Coverage 561-574 Publisher Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics Date 2011 Type Artykuły / Articles Identifier DOI: 10.2478/v10168-011-0040-x Source Archives of Acoustics; 2011; vol. 36; No 3; 561-574 References Allard J. (1992), New empirical equations for sound propagation in rigid frame fibrous materials, Journal of the Acoustical Society of America, 91, 6, 3346, doi.org/10.1121/1.402824 ; Arenas J. (2010), Recent trends in porous sound absorbing materials for noise control, Sound and Vibration, 44, 7, 12. ; Atalla Y. (2005), Inverse acoustical characterization of open cell porous media using impedance tube measurements, Canadian Acoustics, 33, 1, 11. ; Attenborough K. (1982), Acoustical characteristics of porous materials, Physics Reports (Review Section of Physics Letters), 82, 3, 79. ; Attenborough K. (1983), Acoustical characteristics of rigid fibrous absorbents and granular materials, Journal of the Acoustical Society of America, 73, 3, 785, doi.org/10.1121/1.389045 ; Bies D. (1980), Flow resistance information for acoustical design, Applied Acoustics, 13, 5, 357, doi.org/10.1016/0003-682X(80)90002-X ; Champoux Y. (1991), Air-based system for the measurement of porosity, Journal of the Acoustical Society of America, 89, 2, 910, doi.org/10.1121/1.1894653 ; Chazot J. (2010), Characterization of poroelastic materials with a Bayesian approach, null. ; Crocker M. (2007), Handbook of Noise and Vibration Control, 696, doi.org/10.1002/9780470209707.ch57 ; Delany M. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3, 2, 105, doi.org/10.1016/0003-682X(70)90031-9 ; Dunn I. (1986), Calculation of acoustic impedance of multi-layer absorbers, Applied Acoustics, 19, 5, 321, doi.org/10.1016/0003-682X(86)90044-7 ; Fellah Z. (2003a), Measuring the porosity and the tortuosity of porous materials vie reflected waves at oblique incidence, Journal of the Acoustical Society of America, 113, 5, 2424, doi.org/10.1121/1.1567275 ; Fellah Z. (2003b), Measuring the porosity of porous materials having a rigid frame via reflected waves: a time domain analysis with fractional derivatives, Journal of Applied Physics, 93, 1, 296, doi.org/10.1063/1.1524025 ; Fellah Z. (2003c), Ultrasonic measurement of the porosity and tortuosity of air saturated random packings of beads, Journal of Applied Physics, 93, 11, 9352, doi.org/10.1063/1.1572191 ; Fellah Z. (2007), Ultrasonic characterization of porous absorbing materials: Inverse problem, Journal of Sound and Vibration, 302, 4-5, 746, doi.org/10.1016/j.jsv.2006.12.007 ; Garai M. (2005), A simple empirical model of polyester fibre materials for acoustical applications, Applied Acoustics, 66, 12, 1383, doi.org/10.1016/j.apacoust.2005.04.008 ; ISO (1998), 10534-2:1998. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer-function method, International Organization for Standardization, Geneva. ; Kidner M. (2008), A comparison and review of theories of the acoustics of porous materials, International Journal of Acoustics and Vibration, 13, 3, 112. ; Lindfield G. (1995), Numerical Methods Using Matlab (Ellis Horwood Series in Mathematics & Its Applications). ; Miki Y. (1990a), Acoustical properties of porous materials-modifications of Delany-Bazley models, Journal of the Acoustical Society Jpn (E), 11, 1, 19, doi.org/10.1250/ast.11.19 ; Miki Y. (1990b), Acoustical properties of porous materials-Generalizations of empirical models, Journal of the Acoustical Society Jpn (E), 11, 1, 25. ; Press W. (1992), Numerical Recipes In C. ; Ramis J. (2010), New absorbent material acoustic based on kenaf's fibre, Materiales de Construccion, 60, 299, 133, doi.org/10.3989/mc.2010.50809 ; Shoshani Y. (2000), Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs, Applied Acoustics, 59, 1, 77, doi.org/10.1016/S0003-682X(99)00015-8 ; Umnova O. (2005), Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials, Applied Acoustics, 66, 6, 607, doi.org/10.1016/j.apacoust.2004.02.005 ; Voronina N. (1994), Acoustical properties of fibrous materials, Applied Acoustics, 42, 2, 165, doi.org/10.1016/0003-682X(94)90005-1 ; Voronina N. (1996), Improved empirical model of sound propagation through a fibrous material, Applied Acoustics, 48, 2, 121, doi.org/10.1016/0003-682X(95)00055-E ; Voronina N. (1998), An empirical model for elastic porous materials, Applied Acoustics, 55, 1, 67, doi.org/10.1016/S0003-682X(97)00098-4 ; Voronina N. (1999), An empirical model for rigid-frame porous materials with low porosity, Applied Acoustics, 58, 3, 295, doi.org/10.1016/S0003-682X(98)00076-0 ; Voronina N. (2003), A new empirical model for the acoustic properties of loose granular media, Applied Acoustics, 64, 4, 415, doi.org/10.1016/S0003-682X(02)00105-6 ; Wang X. (2004), Multi-stage regression analysis of acoustical properties of polyurethane foams, Journal of Sound and Vibration, 273, 4-5, 1109, doi.org/10.1016/j.jsv.2003.09.039 ; Wilson D. (1997), Simple, relaxational models for the acoustical properties of porous media, Applied Acoustic, 50, 3, 171, doi.org/10.1016/S0003-682X(96)00048-5