Details

Title

An Inverse Method to Obtain Porosity, Fibre Diameter and Density of Fibrous Sound Absorbing Materials

Journal title

Archives of Acoustics

Yearbook

2011

Volume

vol. 36

Issue

No 3

Authors

Keywords

sound absorption ; fibrous materials ; porous material ; material characterization

Divisions of PAS

Nauki Techniczne

Coverage

561-574

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10168-011-0040-x

Source

Archives of Acoustics; 2011; vol. 36; No 3; 561-574

References

Allard J. (1992), New empirical equations for sound propagation in rigid frame fibrous materials, Journal of the Acoustical Society of America, 91, 6, 3346, doi.org/10.1121/1.402824 ; Arenas J. (2010), Recent trends in porous sound absorbing materials for noise control, Sound and Vibration, 44, 7, 12. ; Atalla Y. (2005), Inverse acoustical characterization of open cell porous media using impedance tube measurements, Canadian Acoustics, 33, 1, 11. ; Attenborough K. (1982), Acoustical characteristics of porous materials, Physics Reports (Review Section of Physics Letters), 82, 3, 79. ; Attenborough K. (1983), Acoustical characteristics of rigid fibrous absorbents and granular materials, Journal of the Acoustical Society of America, 73, 3, 785, doi.org/10.1121/1.389045 ; Bies D. (1980), Flow resistance information for acoustical design, Applied Acoustics, 13, 5, 357, doi.org/10.1016/0003-682X(80)90002-X ; Champoux Y. (1991), Air-based system for the measurement of porosity, Journal of the Acoustical Society of America, 89, 2, 910, doi.org/10.1121/1.1894653 ; Chazot J. (2010), Characterization of poroelastic materials with a Bayesian approach, null. ; Crocker M. (2007), Handbook of Noise and Vibration Control, 696, doi.org/10.1002/9780470209707.ch57 ; Delany M. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3, 2, 105, doi.org/10.1016/0003-682X(70)90031-9 ; Dunn I. (1986), Calculation of acoustic impedance of multi-layer absorbers, Applied Acoustics, 19, 5, 321, doi.org/10.1016/0003-682X(86)90044-7 ; Fellah Z. (2003a), Measuring the porosity and the tortuosity of porous materials vie reflected waves at oblique incidence, Journal of the Acoustical Society of America, 113, 5, 2424, doi.org/10.1121/1.1567275 ; Fellah Z. (2003b), Measuring the porosity of porous materials having a rigid frame via reflected waves: a time domain analysis with fractional derivatives, Journal of Applied Physics, 93, 1, 296, doi.org/10.1063/1.1524025 ; Fellah Z. (2003c), Ultrasonic measurement of the porosity and tortuosity of air saturated random packings of beads, Journal of Applied Physics, 93, 11, 9352, doi.org/10.1063/1.1572191 ; Fellah Z. (2007), Ultrasonic characterization of porous absorbing materials: Inverse problem, Journal of Sound and Vibration, 302, 4-5, 746, doi.org/10.1016/j.jsv.2006.12.007 ; Garai M. (2005), A simple empirical model of polyester fibre materials for acoustical applications, Applied Acoustics, 66, 12, 1383, doi.org/10.1016/j.apacoust.2005.04.008 ; ISO (1998), 10534-2:1998. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer-function method, International Organization for Standardization, Geneva. ; Kidner M. (2008), A comparison and review of theories of the acoustics of porous materials, International Journal of Acoustics and Vibration, 13, 3, 112. ; Lindfield G. (1995), Numerical Methods Using Matlab (Ellis Horwood Series in Mathematics & Its Applications). ; Miki Y. (1990a), Acoustical properties of porous materials-modifications of Delany-Bazley models, Journal of the Acoustical Society Jpn (E), 11, 1, 19, doi.org/10.1250/ast.11.19 ; Miki Y. (1990b), Acoustical properties of porous materials-Generalizations of empirical models, Journal of the Acoustical Society Jpn (E), 11, 1, 25. ; Press W. (1992), Numerical Recipes In C. ; Ramis J. (2010), New absorbent material acoustic based on kenaf's fibre, Materiales de Construccion, 60, 299, 133, doi.org/10.3989/mc.2010.50809 ; Shoshani Y. (2000), Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs, Applied Acoustics, 59, 1, 77, doi.org/10.1016/S0003-682X(99)00015-8 ; Umnova O. (2005), Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials, Applied Acoustics, 66, 6, 607, doi.org/10.1016/j.apacoust.2004.02.005 ; Voronina N. (1994), Acoustical properties of fibrous materials, Applied Acoustics, 42, 2, 165, doi.org/10.1016/0003-682X(94)90005-1 ; Voronina N. (1996), Improved empirical model of sound propagation through a fibrous material, Applied Acoustics, 48, 2, 121, doi.org/10.1016/0003-682X(95)00055-E ; Voronina N. (1998), An empirical model for elastic porous materials, Applied Acoustics, 55, 1, 67, doi.org/10.1016/S0003-682X(97)00098-4 ; Voronina N. (1999), An empirical model for rigid-frame porous materials with low porosity, Applied Acoustics, 58, 3, 295, doi.org/10.1016/S0003-682X(98)00076-0 ; Voronina N. (2003), A new empirical model for the acoustic properties of loose granular media, Applied Acoustics, 64, 4, 415, doi.org/10.1016/S0003-682X(02)00105-6 ; Wang X. (2004), Multi-stage regression analysis of acoustical properties of polyurethane foams, Journal of Sound and Vibration, 273, 4-5, 1109, doi.org/10.1016/j.jsv.2003.09.039 ; Wilson D. (1997), Simple, relaxational models for the acoustical properties of porous media, Applied Acoustic, 50, 3, 171, doi.org/10.1016/S0003-682X(96)00048-5
×