Details Details PDF BIBTEX RIS Title Molecular diversity of Clostridium botulinum and phenotypically similar strains Journal title Polish Journal of Veterinary Sciences Yearbook 2016 Issue No 4 Authors Grenda, T. ; Kukier, E. ; Sieradzki, Z. ; Goldsztejn, M. ; Kwiatek, K. Divisions of PAS Nauki Biologiczne i Rolnicze Publisher Polish Academy of Sciences Committee of Veterinary Sciences ; University of Warmia and Mazury in Olsztyn Date 2016 Identifier DOI: 10.1515/pjvs-2016-0104 ; ISSN 1505-1773 Source Polish Journal of Veterinary Sciences; 2016; No 4 References Kukier (2010), Occurrence ofClostridium perfringensin food chain, B Vet I Pulawy, 54, 571. ; Collins (1998), Phylogeny and taxonomy of the food - borne pathogenClostridium botulinumand its neurotoxins, J Appl Microbiol, 84, 5, doi.org/10.1046/j.1365-2672.1997.00313.x ; Carlier (2004), ouas Osteosynthesis - associated bone infection caused by a nonproteolytic nontoxigenicClostridium botulinum - like strain, J Clin Microbiol, 42, 484, doi.org/10.1128/JCM.42.1.484-486.2004 ; Dover (2014), Molecular Characterization of a Novel Botulinum Neurotoxin Type H Gene, J Infect Dis, 209, 192, doi.org/10.1093/infdis/jit450 ; Suen (1988), Genetic confirmation of identities of neurotoxigenicClostridium baratiiandClostridium butyricumimplicated as agents if infant botulism, J Clin Microbiol, 26, 2191. ; Smith (1975), Inhibition ofClostridium botulinumby strains ofClostridium perfringensisolated from soil, Appl Microbiol, 30, 319. ; Hielm (1998), Genomic Analysis ofClostridium botulinumGroup II by Pulsed - Field Gel Electrophoresis, Appl Environ Microb, 64, 703. ; Lee (1970), Correlation of toxic and non - toxic strains ofClostridium botulinumby DNA composition and homology, J Gen Microbiol, 60, 117, doi.org/10.1099/00221287-60-1-117 ; Raffestin (2004), Organization and regulation of the neurotoxin genes inClostridium botulinumandClostridium tetani, Anaerobe, 10, 93, doi.org/10.1016/j.anaerobe.2004.01.001 ; Hatheway (1995), Botulism : the present status of the disease, Curr Top Microbiol, 195. ; Bradshaw (2010), Construction of a nontoxigenicClostridium botulinumstrain for food challenge studies, Appl Environ Microbiol, 76, 387, doi.org/10.1128/AEM.02005-09 ; Raphael (2007), Real - time PCR detection of the nontoxic nonhemagglutinin gene as a rapid screening method for bacterial isolates harboring the botulinum neurotoxin gene complex, J Microbiol Meth, 71, 343, doi.org/10.1016/j.mimet.2007.09.016 ; De (2009), Medici Multiplex PCR for Detection of Botulinum Neurotoxin - Producing Clostridia in Clinical Food and Environmental Samples, Appl Environ Microb, 20, 6457. ; Johnson (2005), Characterization ofClostridium botulinumstrains associated with an infant botulism case in the United Kingdom, Appl Environ Microb, 43, 2602. ; Hill (2013), Genetic diversity withinClostridium botulinumserotypes botulinum neurotoxin gene clusters and toxin subtypes, Curr Top Microbiol Immunol, 364. ; Rossetto (2014), Botulinum neurotoxins : genetic structural and mechanistic insights, Nat Rev Microbiol, 12, 535, doi.org/10.1038/nrmicro3295 ; Sawires (2006), Clostridium perfringens : insight into virulence evolution and population structure, Anaerobe, 12, 23, doi.org/10.1016/j.anaerobe.2005.10.002 ; Umeda (2013), Multi - locus variable number tandem repeat analysis forClostridium botulinumtype B isolates in Japan : comparison with other isolates and genotyping methods, Infect Genet Evol, 16, 298, doi.org/10.1016/j.meegid.2013.02.022 ; Gryko (1990), A simple method of detection of toxigenicClostridium botulinumtype B strains, J Microbiol Meth, 11, 187, doi.org/10.1016/0167-7012(90)90055-B ; Hall (1985), Isolation of an organism resemblingClostridium baratiwhich produces type F botulinal toxin from an infant with botulism, J Clin Microbiol, 21, 654. ; Nakamura (1977), Clostridium sporogenesisolates and their relationship toC botulinumbased on deoxyribonucleic acid reassociation, J Gen Microbiol, 100, 395, doi.org/10.1099/00221287-100-2-395 ; Lindström (1999), Identification ofClostridium botulinumwith API Rapid ID A and RapID ANA II, FEMS Immunol Med Microbiol, 32, 267, doi.org/10.1016/S0928-8244(99)00041-3 ; McCallum (2015), Genomic Epidemiology of Clostridium botulinum Isolates from Temporally Related Cases of Infant Botulism in New South Wales Australia, J Clin Microbiol, 53. ; Nevas (2005), Diversity of proteolyticClostridium botulinumstrains determined by pulsed - field gel electrophoresis approach, Appl Environ Microb, 71, 1311, doi.org/10.1128/AEM.71.3.1311-1317.2005 ; Hatheway (1990), Toxigenic clostridia, Clin Microbiol Rev, 3, 66, doi.org/10.1128/CMR.3.1.66 ; Lindström (2006), Laboratory diagnostics of botulism, Clin Microbiol Rev, 19, 298, doi.org/10.1128/CMR.19.2.298-314.2006 ; Zhou (1993), Transfer of neurotoxigenicity fromClostridium butyricumto a nontoxigenicClostridium botulinumtype E - like strain, Appl Environ Microbiol, 59, 3825. ; Johnson (2001), Clostridium botulinumand its neurotoxins : a metabolic and cellular perspective, Toxicon, 39, 1703, doi.org/10.1016/S0041-0101(01)00157-X