Details
Title
Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectivenessJournal title
Archives of ThermodynamicsYearbook
2016Issue
No 4Authors
Keywords
effectiveness ; heat transfer intensification ; number of transfer unit ; helical coilDivisions of PAS
Nauki TechniczneCoverage
137-159Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2016Type
Artykuły / ArticlesIdentifier
DOI: 10.1515/aoter-2016-0032Source
Archives of Thermodynamics; 2016; No 4; 137-159References
Muszynski (2017), Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems, Appl Therm Eng, doi.org/10.1016/j.applthermaleng.2017.01.021 ; Di Liberto (2013), A study of turbulent heat transfer in curved pipes by numerical simulation, Int J Heat Mass Transf, 59, 112, doi.org/10.1016/j.ijheatmasstransfer.2012.12.011 ; Petrakis (1999), Fluid flow behaviour in a curved annular conduit, Int J Non Linear Mech, 34, 13, doi.org/10.1016/S0020-7462(97)00070-X ; Naphon (2006), A review of flow and heat transfer characteristics in curved tubes, Renew Sustain Energy Rev, 10, 463, doi.org/10.1016/j.rser.2004.09.014 ; Jo (2014), Experimental investigation of convective heat transfer in a narrow rectangular channel for upward and downward flows, Nucl Eng Technol, 46, 2, doi.org/10.5516/NET.02.2013.057 ; Cieśliński (2016), Heat transfer in plate heat exchanger channels : Experimental validation of selected correlation equations, Arch Thermodyn, 37, 3, doi.org/10.1515/aoter-2016-0017 ; Moawed (2011), Experimental study of forced convection from helical coiled tubes with different parameters, Energy Convers Manag, 52, 1150, doi.org/10.1016/j.enconman.2010.09.009 ; Rozzi (2007), Heat treatment of fluid foods in a shel l and tube heat exchanger : Comparison between smooth and helical ly corrugated wal l tubes, Food Eng, 79, 249, doi.org/10.1016/j.jfoodeng.2006.01.050 ; Lin (1997), Laminar forced convection in the entrance region of helical pipes, Int J Heat Mass Transf, 40, 3293, doi.org/10.1016/S0017-9310(96)00381-X ; Jamshidi (2013), Experimental analysis of heat transfer enhancement in shel l and helical tube heat exchangers, Appl Therm Eng, 51, 644, doi.org/10.1016/j.applthermaleng.2012.10.008 ; Jayakumar (2008), Experimental and CFD estimation of heat transfer in helical ly coiled heat exchangers, Chem Eng Res Des, 86, 221, doi.org/10.1016/j.cherd.2007.10.021 ; Patankar (1974), Prediction of laminar flow and heat transfer in helical ly coiled pipes, Fluid Mech, 62, 539, doi.org/10.1017/S0022112074000796 ; Laskowski (2011), The concept of a new approximate relation for exchanger heat transfer effectiveness for a cross - flow heat exchanger with unmixed fluids, Power Technol, 91, 93. ; Conte (2008), Numerical investigations of laminar flow in coiled pipes, Appl Therm Eng, 28, 423, doi.org/10.1016/j.applthermaleng.2007.05.009 ; Lazova (2016), Performance evaluation of a helical coil heat exchanger working under supercritical conditions in a solar organic Rankine cycle instal lation, Energies, 9, 432, doi.org/10.3390/en9060432 ; Ankanna (2014), Performance analysis of fabricated helical coil heat exchanger Iss, Int J Eng Res, 3, 1. ; Petrakis (1997), Exponential ly decaying flow in a gently curved annular pipe, Int J Non Linear Mech, 32, 823, doi.org/10.1016/S0020-7462(96)00099-6 ; Muszynski (2016), Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers, Appl Therm Eng, 100, 105, doi.org/10.1016/j.applthermaleng.2016.01.120 ; Kumar (2008), Numerical studies of a tube - in - tube helical ly coiled heat exchanger, Chem Eng Process Process Intensif, 47, 2287, doi.org/10.1016/j.cep.2008.01.001 ; Xin (1997), An experimental study of single - phase and two - phase flow pressure drop in annular helicoidal pipes Heat Fluid Flow, Int J, 18, 482. ; Muszynski (2016), Heat transfer characteristics of hybrid microjet - Microchannel cooling module, Appl Therm Eng, 93, 1360, doi.org/10.1016/j.applthermaleng.2015.08.085 ; Berger (1983), Flow in curved pipes, Annu Rev Fluid Mech, 15, 461, doi.org/10.1146/annurev.fl.15.010183.002333 ; Muszynski (2016), Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator, Arch Thermodyn, 37, 3, doi.org/10.1515/aoter-2016-0019 ; Brauer (1964), Strömungswiderstand und Wärmeübergang bei quer angeströmten Wärmeaustauschern mit kreuzgitterförmig angeordneten glatten und berippten Rohren Chemie Ing in, Tech, 36, 247, doi.org/10.1002/cite.330360314()Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China