Details Details PDF BIBTEX RIS Title Morphology and surface topography of Ti6Al4V lattice structure fabricated by selective laser sintering Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2017 Volume 65 Issue No 1 Authors Maszybrocka, J. ; Skrabalak, G. ; Karolus, M. ; Stwora, A. ; Gapiński, B. Divisions of PAS Nauki Techniczne Coverage 85-92 Date 2017 Identifier DOI: 10.1515/bpasts-2017-0011 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2017; 65; No 1; 85-92 References Yan (2015), Ti - triply periodic minimal surface structures for bone implants fabricated via selective laser melting of the Mechanical Behavior of, Journal Biomedical Materials, 6, 61. ; Najjar (2005), Identification of scratch mechanisms on a retrieved metallic femoral head, Wear, 258. ; Kerckhofs (2013), High resolution microfocus X ray computed tomography for surface roughness measurements of additive manufactured porous materials, Advanced Engineering Materials, 15, 153, doi.org/10.1002/adem.201200156 ; Kapfer (2011), Minimal surface scaffold designs for tissue engineering, Biomaterials, 32, 29, doi.org/10.1016/j.biomaterials.2011.06.012 ; Van Bael (2011), Micro - based improvement of geometrical and mechanical controllability of selective laser melted Ti porous structures and, Materials Science Engineering, 6, 528. ; Chino (2008), Directionally freeze - cast titanium foam with aligned elongated pores, Acta Materialia, 56, 105, doi.org/10.1016/j.actamat.2007.09.002 ; Sumner (2015), Long - term implant fixation and stress - shielding in total hip replacement, Journal of Biomechanics, 48, 797, doi.org/10.1016/j.jbiomech.2014.12.021 ; Naoya (2016), Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing : An in vivo experiment and Materials for Biological Applications, Materials Science Engineering, 690. ; Dunand (2004), Processing of titanium foams, Advanced Engineering Materials, 6, 369, doi.org/10.1002/adem.200405576 ; Ryan (2006), Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27, 2651, doi.org/10.1016/j.biomaterials.2005.12.002 ; Hollister (2002), Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials, 23, 20, doi.org/10.1016/S0142-9612(02)00148-5 ; Li (2005), A novel porous Ti : characterization and cell attachment, Journal of Biomedical Materials Research Part A, 6, 223, doi.org/10.1002/jbm.a.30278