Details Details PDF BIBTEX RIS Title Symbolic integration with respect to the Haar measure on the unitary groups Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2017 Volume 65 Issue No 1 Authors Puchała, Z. ; Miszczak, J.A. Divisions of PAS Nauki Techniczne Coverage 21-27 Date 2017 Identifier DOI: 10.1515/bpasts-2017-0003 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2017; 65; No 1; 21-27 References Enríquez (2015), Minimal Rényi - - Ingarden - Urbanik entropy of multipartite quantum states, Entropy, 17, 5063, doi.org/10.3390/e17075063 ; Bernstein (2004), The computational complexity of rules for the character table of Sn of, Journal Symbolic Computation, 37, 727, doi.org/10.1016/j.jsc.2003.11.001 ; Fulton (1991), Representation First Course - Graduate Texts in Mathematics vol Springer Verlag, Theory, 129. ; Puchała (2012), Restricted numerical shadow and the geometry of quantum entanglement Journal of Physics A : Mathematical and, Theoretical, 45, 41. ; Dunkl (2011), Numerical shadows : measures and densities on the numerical range Linear, Algebra Appl, 434. ; Hiai (2006), The semicircle law free random variables and entropy Amer Mathematical, Society, 77. ; Collins (2006), Integration with respect to the Haar measure on unitary orthogonal and symplectic group, Commun Math Phys, 264. ; Weingarten (1978), Asymptotic behavior of group integrals in the limit of infinite rank of, Journal Mathematical Physics, 19, 999, doi.org/10.1063/1.523807 ; Dunkl (2011), Numerical shadow and geometry of quantum states, Phys A Math Theor, 44, 33. ; Ullah (1963), Expectation value fluctuations in the unitary ensemble, Physical Review, 132. ; Miszczak (2012), Generating and using truly random quantum states in Mathematica, Comput Phys Commun, 183.