Details Details PDF BIBTEX RIS Title Uncertainty Interval Evaluation Using the Chi-Square and Fisher Distributions in the Measurement Process Journal title Metrology and Measurement Systems Yearbook 2010 Issue No 2 Authors Catelani, Marcantonio ; Zanobini, Andrea ; Ciani, Lorenzo Keywords measurement uncertainty ; confidence level ; statistical distributions Divisions of PAS Nauki Techniczne Publisher Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation Date 2010 Type Artykuły / Articles Identifier DOI: 10.2478/v10178-010-0017-5 ; ISSN 2080-9050, e-ISSN 2300-1941 Source Metrology and Measurement Systems; 2010; No 2 Pages 195-204 References BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. (1995). <i>Guide to the Expression of Uncertainty in Measurement</i>. International Organization for Standardization, Geneva, Switzerland. ; BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. (2008). <i>Evaluation of measurement data - Supplement 1 to the "Guide to the expression of uncertainty in measurement" - Propagation of distributions using a Monte Carlo method</i>. Joint Committee for Guides in Metrology, Bureau International des Poids et Mesures, JCGM 101. ; Catelani M. (2008), Introduction to the t and chi-square distribution for a more accurate evaluation of the measure of the Word Error Rate in Analog-to-Digital Converters, Metrol. Meas. Syst, 15, 4, 483. ; Box G. (1978), Statistics for experimenters. ; Catelani M. (2009), Statistical Analysis Of The Word Error Rate Measurement In Analog-To-Digital Converters, null, 694. ; Kendall M. (1987), Kendall's Advanced Theory of Statistics, 1. ; Bendat J. (1986), Random data. Analysis and Measurament Procedures. ; Dietrich C. (1991), The Statistics of Scientific and Industrial Measurament. ; Navidi W. (2007), Statistics for Engineers and Scientists. ; Papoulis A. (1990), Probability and Statistics.