Details Details PDF BIBTEX RIS Title Statistics of Envelope of High-Frequency Ultrasonic Backscatter from Trabecular Bone: Simulation Study Journal title Archives of Acoustics Yearbook 2010 Volume vol. 35 Issue No 3 Authors Litniewski, Jerzy Keywords trabecular bone ; Rayleigh distribution ; scattering ; simulations Divisions of PAS Nauki Techniczne Coverage 349-360 Publisher Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics Date 2010 Type Artykuły / Articles Identifier DOI: 10.2478/v10168-010-0029-x Source Archives of Acoustics; 2010; vol. 35; No 3; 349-360 References Bamber J. (1981), Acoustic properties of normal and cancerous human liver, Ultrasound Med. Biol, 7, 121. ; Chaffai S. (2000), Frequency dependence of ultrasonic backscattering in cancellous bone: Autocorrelation model and experimental results, J. Acoust. Soc. Am, 108, 5, 2403. ; Dagan D. (2004), Single-trabecula building-block for large-scale finite element models of cancellous bone, Medical & Biological Engineering & Computing, 42, 549. ; Flax L. (1981), Physical Acoustics, 15, 191. ; Goodman J. (1985), Statistical Optics. ; Hans D. (1995), Do ultrasounds measurements on the Os Calcis reflect more the bone microarchitecture than the bone mass?: A two-dimensional histomorfometric study, Bone, 16, 3, 295. ; Häsler K. (1999), Relationships between static histomorphometry and ultrasound in the human calcaneus, Calcif Tissue Int, 64, 477. ; Hosokawa A. (1997), Ultrasonic wave propagation in bovine cancellous bone, J. Acoustic Soc. Am, 101, 558. ; Insana M. (1990), Describing small-scale structure in random media using pulse-echo ultrasound, J. Acoust. Soc. Am, 87, 179. ; Klimonda Z. (2009), Spatial resolution of attenuation imaging, Archives of Acoustics, 34, 4, 461. ; Kothari M. (1999), Measurement of intraspecimen variation in vertebral cancellous bone architecture, Bone, 25, 2, 245. ; Laugier P. (2000), Quantitative ultrasound for Bone Status Assessment, IEEE Ultrasonic Symposium Proceedings, 2, 1341. ; Laugier P. (1997), Clinical assessment of the backscatter coefficient in osteoporosis, null, 1101. ; Laugier P. (2008), Que vadis, ultrasonics of bone? Present state and future trends, Archives of Acoustics, 33, 4, 553. ; Litniewski J. (2005), Determination of the elasticity coefficient for a single trabecula of a cancellous bone: Scanning Acoustic Microscopy approach, Ultrasound Med. Biol, 31, 10, 1361. ; Litniewski J. (2009), Semi-empirical bone model for determination of trabecular structure properties from backscattered ultrasound, Ultrasonics, 49, 505. ; Padilla F. (2003), Prediction of backscattered coefficient in trabecular bones using a numerical model of tree-dimensional microstructure, J. Acoust. Soc. Am, 113, 2, 1122. ; Saha P. (2004), Measurement of Trabecular Bone Thickness in the Limited Resolution Regime of In Vivo MRI by Fuzzy Distance Transform, IEEE Trans. Medical Imaging, 23, 53. ; Shankar M. (2000), A general statistical model for ultrasonic backscattering from tissue, IEEE Trans. on UFFC, 47, 3, 727. ; Trebacz H. (1999), Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus, Osteo. Int, 9, 99. ; Wagner R. (1987), Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound, J. Opt. Soc. Am, 4, 5, 910. ; Wear K. (1999), Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment, J. Acoust. Soc. Am, 106, 6, 3659. ; Wear K. (1998), Assessment of bone density using ultrasonic backscatter, Ultrasound Med Biol, 24, 5, 689.