Szczegóły
Tytuł artykułu
Static behaviour of functionally graded plates resting on elastic foundations using neutral surface conceptTytuł czasopisma
Archive of Mechanical EngineeringRocznik
2021Wolumin
vol. 68Numer
No 1Autorzy
Afiliacje
Nguyen, Van Loi : Department of Strength of Materials, National University of Civil Engineering, Hanoi, Vietnam ; Tran, Minh Tu : Department of Strength of Materials, National University of Civil Engineering, Hanoi, Vietnam ; Nguyen, Van Long : Department of Strength of Materials, National University of Civil Engineering, Hanoi, Vietnam ; Le, Quang Huy : Department of Highway Engineering, Faculty of Civil Engineering, University of Transport Technology, Hanoi, VietnamSłowa kluczowe
static analysis ; functionally graded plated ; Winkler-Pasternak foundation ; physical neutral surface ; four-variable refined theoryWydział PAN
Nauki TechniczneZakres
5-22Wydawca
Polish Academy of Sciences, Committee on Machine BuildingBibliografia
[1] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.[2] S-H. Chi and Y-L.Chung. Mechanical behavior of functionally graded material plates under transverse load – Part I: Analysis. International Journal of Solids and Structures, 43(13):3657–3674, 2006. doi: 10.1016/j.ijsolstr.2005.04.011.
[3] V-L. Nguyen and T-P. Hoang. Analytical solution for free vibration of stiffened functionally graded cylindrical shell structure resting on elastic foundation. SN Applied Sciences, 1(10):1150, 2019. doi: 10.1007/s42452-019-1168-y.
[4] A.M. Zenkour and N.A. Alghamdi. Thermoelastic bending analysis of functionally graded sandwich plates. Journal of Materials Science, 43(8):2574–2589, 2008. doi: 10.1007/s10853-008-2476-6.
[5] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials & Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
[6] I. Mechab, H.A. Atmane, A. Tounsi, H.A. Belhadj, E.A. Adda Bedia. A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mechanica Sinica, 26(6):941–949, 2010. doi: 10.1007/s10409-010-0372-1.
[7] M.T. Tran, V.L. Nguyen, and A.T. Trinh. Static and vibration analysis of cross-ply laminated composite doubly curved shallow shell panels with stiffeners resting on Winkler–Pasternak elastic foundations. International Journal of Advanced Structural Engineering, 9(2):153–164, 2017. doi: 10.1007/s40091-017-0155-z.
[8] A. Gholipour, H. Farokhi, and M.H. Ghayesh. In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dynamics, 79(3):1771–1785, 2015. doi: 10.1007/s11071-014-1773-7.
[9] M.T. Tran, V.L. Nguyen, S.D. Pham, and J. Rungamornrat. Vibration analysis of rotating functionally graded cylindrical shells with orthogonal stiffeners. Acta Mechanica, 231:2545–2564, 2020. doi: 10.1007/s00707-020-02658-y.
[10] S-H. Chi and Y-L. Chung. Mechanical behavior of functionally graded material plates under transverse load – Part II: Numerical results. International Journal of Solids and Structures, 43(13):3675–3691, 2006. doi: 10.1016/j.ijsolstr.2005.04.010.
[11] S. Hosseini-Hashemi, H.R.D Taher, H. Akhavan, and M. Omidi. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Applied Mathematical Modelling, 34(5):1276–1291, 2010. doi: 10.1016/j.apm.2009.08.008.
[12] M.S.A. Houari, S. Benyoucef, I. Mechab, A. Tounsi, and E.A. Adda Bedia. Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates. Journal of Thermal Stresses, 34(4):315–334, 2011. doi: 10.1080/01495739.2010.550806.
[13] M.Talha and B.N. Singh. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Applied Mathematical Modelling, 34(12):3991–4011, 2010. doi: 10.1016/j.apm.2010.03.034.
[14] H-T. Thai and S-E. Kim. A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Composite Structures, 96:165–173, 2013. doi: 10.1016/j.compstruct.2012.08.025.
[15] A. Chikh, A. Tounsi, H. Hebali, and S.R. Mahmoud. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems, 19(3):289–297, 2017. doi: 10.12989/sss.2017.19.3.289.
[16] H.H. Abdelaziz, M.A.A. Meziane, A.A. Bousahla, A. Tounsi, S.R. Mahmoud, and A.S. Alwabli. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel and Composite Structures, 25(6):693–704, 2017. doi: 10.12989/scs.2017.25.6.693.
[17] D-G. Zhang, Y-H. Zhou. A theoretical analysis of FGM thin plates based on physical neutral surface. Computational Materials Science, 44(2):716–720, 2008. doi: 10.1016/j.commatsci.2008.05.016.
[18] A.A. Bousahla, M.S.A. Houari, A. Tounsi A, E.A. Adda Bedia. A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. International Journal of Computational Methods, 11(06):1350082, 2014. doi: 10.1142/S0219876213500825.
[19] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Composites Part B: Engineering, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.
[20] D-G. Zhang. Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica, 49(2):283–293, 2014. doi: 10.1007/s11012-013-9793-9.
[21] D-G. Zhang. Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Composite Structures, 100:121–126, 2013. doi: 10.1016/j.compstruct.2012.12.024.
[22] H-T. Thai and B. Uy. Levy solution for buckling analysis of functionally graded plates based on a refined plate theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(12):2649–2664, 2013. doi: 10.1177/0954406213478526.
[23] Y. Khalfi, M.S.A. Houari, and A. Tounsi. A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation. International Journal of Computational Methods, 11(05):1350077, 2014. doi: 10.1142/S0219876213500771.
[24] H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, and A. Tounsi. Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(1):265–275, 2016. doi: 10.1007/s40430-015-0354-0.
[25] H. Shahverdi and M.R. Barati. Vibration analysis of porous functionally graded nanoplates. International Journal of Engineering Science, 120:82–99, 2017. doi: 10.1016/j.ijengsci.2017.06.008.
[26] R.P. Shimpi and H.G. Patel. A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 43(22-23):6783–6799, 2006. doi: 10.1016/j.ijsolstr.2006.02.007.
[27] H-T. Thai and D-H. Choi. A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology, 71(16):1850–1858, 2011. doi: 10.1016/j.compscitech.2011.08.016.
[28] M.H. Ghayesh. Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams. The European Physical Journal Plus, 134(8):401, 2019. doi: 10.1140/epjp/i2019-12472-x .
[29] M.H. Ghayesh. Nonlinear oscillations of FG cantilevers. Applied Acoustics, 145:393–398, 2019. doi: 10.1016/j.apacoust.2018.08.014.
[30] M.H. Ghayesh. Dynamical analysis of multilayered cantilevers. Communications in Nonlinear Science and Numerical Simulation, 71:244–253, 2019. doi: 10.1016/j.cnsns.2018.08.012.
[31] M.H. Ghayesh. Mechanics of viscoelastic functionally graded microcantilevers. European Journal of Mechanics – A/Solids, 73:492–499, 2019. doi: 10.1016/j.euromechsol.2018.09.001.
[32] M.H. Ghayesh. Dynamics of functionally graded viscoelastic microbeams. International Journal of Engineering Science, 124:115–131, 2018. doi: 10.1016/j.ijengsci.2017.11.004.
[33] A.T. Trinh, M.T. Tran, H.Q. Tran, and V.L. Nguyen. Vibration analysis of cross-ply laminated composite doubly curved shallow shell panels with stiffeners. Vietnam Journal of Science and Technology, 55(3):382–392, 2017. doi: 10.15625/2525-2518/55/3/8823.