Details

Title

Numerical analysis of the compositional graded quaternary barrier AlGaN-based ultraviolet-C light-emitting diode

Journal title

Opto-Electronics Review

Yearbook

2021

Volume

29

Issue

3

Affiliation

Malik, Shahzeb : Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan ; Usman, Muhammad : Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan ; Hussain, Masroor : Faculty of Computer Sciences and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan ; Munsif, Munaza : Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan ; Khan, Sibghatullah : Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan ; Rasheed, Saad : Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan ; Ali, Shazma : Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan

Authors

Keywords

ultraviolet ; light-emitting diodes ; efficiency ; quantum wells

Divisions of PAS

Nauki Techniczne

Coverage

80-84

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Würtele, M. et al. Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. Water Res. 45, 1481–1489 (2011), https://doi.org/10.1016/j.watres.2010.11.015
  2. Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77–84 (2008), https://doi.org/10.1038/nphoton.2007.293
  3. Usman, M., Malik, S. & Munsif, M. AlGaN-based ultraviolet light-emitting diodes: Challenges and Opportunities. Luminescence 36, 294–305 (2021), https://doi.org/10.1002/bio.3965
  4. Hirayama, H., Maeda, N., Fujikawa, S., Toyoda, S. & Kamata, N. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 53, 100209 (2014), http://doi.org/10.7567/JJAP.53.100209
  5. Kneissl, M. A brief review of III-nitride UV emitter technologies and their applications. in III-Nitride Ultraviolet Emitters: Technology and Applications. Springer Series in Materials Science, vol 227. (eds. Kneissl, M. & Rass, J.) 1–25 (Springer Cham, 2016). https://doi.org/10.1007/978-3-319-24100-5_1
  6. Usman, M., Malik, S., Khan, M. A. & Hirayama, H. Suppressing the efficiency droop in AlGaN-based UVB LEDs. Nanotechnology 32, 215703 (2021), https://doi.org/10.1088/1361-6528/abe4f9
  7. Heilingloh, C. S. et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control 48, 1273¬1275 (2020), https://doi.org/10.1016/j.ajic.2020.07.031
  8. Khan, M. A., Shatalov, M., Maruska, H., Wang, H. & Kuokstis, E. III–nitride UV devices. Jpn. J. Appl. Phys. 44, 7191 (2005), https://doi.org/10.1143/jjap.44.7191
  9. Kneissl, M. et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26, 014036 (2010), https://doi.org/10.1088/0268-1242/26/1/014036
  10. Shatalov, M. et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5, 082101 (2012), https://doi.org/10.1143/apex.5.082101
  11. Pernot, C. et al. Development of high efficiency 255–355 nm AlGaN‐based light‐emitting diodes. Phys. Status Solidi A 208, 1594–1596 (2011), https://doi.org/10.1002/pssa.201001037
  12. Huang, C., Zhang, H. & Sun, H. Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system. Nano Energy, 77, 105149 (2020), https://doi.org/10.1016/j.nanoen.2020.105149
  13. Chen, K. et al. Effect of dislocations on electrical and optical properties of n-type Al 0.34 Ga 0.66 N. Appl. Phys. Lett. 93, 192108 (2008), https://doi.org/10.1063/1.3021076
  14. Hirayama, H., Tsukada, Y., Maeda, T. & Kamata, N. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 031002 (2010), https://doi.org/10.1143/apex.3.031002
  15. Huang, M.-F. & Lu, T.-H. Optimization of the active-layer structure for the deep-UV AlGaN light-emitting diodes. IEEE J. Quantum Electron. 42, 820–826 (2006), https://doi.org/10.1109/JQE.2006.877217
  16. Lu, L. et al. Improving performance of algan‐based deep‐ultraviolet light‐emitting diodes by inserting a higher Al‐content algan layer within the multiple quantum wells. Phys. Status Solidi A 214, 1700461 (2017), https://doi.org/10.1002/pssa.201700461
  17. Arif, R. A., Ee, Y. K. & Tansu, N. Nanostructure engineering of staggered InGaN quantum wells light emitting diodes emitting at 420–510 nm. Phys. Status Solidi A 205, 96–100 (2008), https://doi.org/10.1002/pssa.200777478
  18. Usman, M. et al. Zigzag-shaped quantum well engineering of green light-emitting diode. Superlattices Microstruct. 132, 106164, (2019) https://doi.org/10.1016/j.spmi.2019.106164
  19. Usman, M. et al. Enhanced internal quantum efficiency of bandgap-engineered green W-shaped quantum well light-emitting diode. Appl. Sci. 9, 77 (2019), https://doi.org/10.3390/app9010077
  20. Yang, G. et al. Design of deep ultraviolet light-emitting diodes with staggered AlGaN quantum wells. Physica E 62, 55–58 (2014), https://doi.org/10.1016/j.physe.2014.04.014
  21. Zhang, Y. et al. The improvement of deep-ultraviolet light-emitting diodes with gradually decreasing Al content in AlGaN electron blocking layers. Superlattices Microstruct. 82, 151–157 (2015), https://doi.org/10.1016/j.spmi.2015.02.004
  22. Li, Y. et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers. IEEE Photonics J. 5, 8200309–8200309 (2013), https://doi.org/10.1109/JPHOT.2013.2271718
  23. Fan, X. et al. Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer. Superlattices Microstruct. 88, 467–473 (2015), https://doi.org/10.1016/j.spmi.2015.10.003
  24. Huang, J. et al. Study of deep ultraviolet light-emitting diodes with ap-AlInN/AlGaN superlattice electron-blocking layer. J. Electron. Mater. 46, 4527–4531 (2017), https://doi.org/10.1007/s11664-017-5413-0
  25. Usman, M., Jamil, T., Malik, S. & Jamal, H. Designing anti-trapezoidal electron blocking layer for the amelioration of AlGaN-based deep ultraviolet light-emitting diodes internal quantum efficiency. Optik 232, 166528 (2021). https://doi.org/10.1016/j.ijleo.2021.166528
  26. Zhang, X. et al. Efficiency improvements in AlGaN-based deep-ultraviolet light-emitting diodes with graded superlattice last quantum barrier and without electron blocking layer. J. Electron. Mater. 48, 460–466 (2019). https://doi.org/10.1007/s11664-018-6716-5
  27. Li, K., Zeng, N., Liao, F. & Yin, Y. Investigations on deep ultraviolet light-emitting diodes with quaternary AlInGaN streamlined quantum barriers for reducing polarization effect. Superlattices Microstruct. 145, 106601 (2020). https://doi.org/10.1016/j.spmi.2020.106601
  28. Shatalov, M. et al. Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells. IEEE J. Sel. Top. Quantum Electron. 8, 302–309 (2002). https://doi.org/10.1109/2944.999185
  29. Chen, X., Wang, D. & Fan, G. Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN super-lattice electron blocking layer. J. Electron. Mater. 48, 2572–2576 (2019). https://doi.org/10.1007/s11664-019-07001-3
  30. Kim, S. J. & Kim, T. G. Numerical study of enhanced performance in InGaN light-emitting diodes with graded-composition AlGaInN barriers. J. Opt. Soc. Korea 17, 16-21 (2013) . https://doi.org/10.3807/JOSK.2013.17.1.016
  31. Adivarahan, V. et al. Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells. Appl. Phys. Lett. 79, 4240–4242 (2001). https://doi.org/10.1063/1.1425453
  32. Chen, C. et al. Pulsed metalorganic chemical vapor deposition of quaternary AlInGaN layers and multiple quantum wells for ultraviolet light emission. Jpn. J. Appl. Phys. 41, 1924 (2002). https://doi.org/10.1143/jjap.41.1924

Date

28.08.2021

Type

Article

Identifier

DOI: 10.24425/opelre.2021.135831

Source

Opto-Electronics Review
×