Details

Title

Main aspects influencing the evaluation of atmospheric overvoltages in high-voltage networks

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

No. 1

Affiliation

Borecki, Michał : Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland ; Ciuba, Maciej : Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland ; Kharchenko, Yevhen : University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 2, 10-719 Olsztyn, Poland ; Kharchenko, Yevhen : Lviv Polytechnic National University, ul. S. Bandery St 12, 79000 Lviv, Ukraine ; Khanas, Yuriy : Lviv Polytechnic National University, ul. S. Bandery St 12, 79000 Lviv, Ukraine

Authors

Keywords

overvoltage protection ; high-voltage network ; reliability of power grids ; risk analysis

Divisions of PAS

Nauki Techniczne

Coverage

e135838

Bibliography

  1.  J.L. He and R. Zeng, “Lightning shielding failure analysis of 1000 kV ultra-high voltage AC transmission line”, Proc. CIGRE Session, 2010, pp. 1‒9.
  2.  A. Borghetti, G. Martinez Figueiredo Ferraz, F. Napolitano, C.A. Nucci, A. Piantini, and F. Tossani, “Lightning protection of a multi- circuit HV-MV overhead line”, Electr. Power Syst. Res. 180, 1‒10 (2020).
  3.  A. Murphy, “Lightning strike direct effects”, Polymer Composites in the Aerospace Industry, 2nd Edition, Woodhead Publishing, 2020.
  4.  G. Shanqiang, W. Jian, W. Min, G. Juntian, Z. Chun, and L. Jian, “Study on lightning risk assessment and early warning for UHV DC transmission channel”, High Voltage 4(2), 144‒150 (2019).
  5.  R.G. Deshagoni, T. Auditore, R. Rayudu, and C.P. Moore, “Factors Determining the Effectiveness of a Wind Turbine Generator Lightning Protection System”, IEEE Trans. Ind. Appl 55(6), 6585‒6592 (2019).
  6.  J. Bendík, et al., “Experimental verification of material coefficient defining separation distance for external lightning protection system”, J. Electrostat. 98, 69‒74 (2019).
  7.  K. I. Pruslin, “Organization for increasing lightning resistance of overvoltage lines PJSC “FGC UES””, VI Russian Conference on Lightning Protection, 2018, pp. 1‒24.
  8.  G. E. Masin, “Indicators of lightning resistance of power facilities of Kubanenergo PJSC and measures to increase them”, VI Russian Conference on Lightning Protection, 2018, pp. 1‒9.
  9.  A. Andreotti, A. Pierno, and V.A. Rakov, “A new tool for calculation of lightning-induced voltages in power systems – ”Part I: Development of circuit model”, IEEE Trans. Power Del. 30(1), 326‒333 (2015).
  10.  C. Wooi, Z. Abul-Malek, M. Rohani, A. Yusof, S. Arshad, and A. Elgayar, “Comparison of lightning return stroke channel-base current models with measured lightning current”, Bull. EEI 8(4), 1478‒1488(2019).
  11.  T.H. Thang, Y. Baba, V.A. Rakov, and A. Piantini, “FDTD computation of lightning-induced voltages on multi-conductor lines with surge arresters and pole transformers”, IEEE Trans. Electromagn. Compat. 57(3), 442‒447(2015).
  12.  M. Brignone, F. Delfino, R. Procopio, M. Rossi, and F. Rachidi, “Evaluation of power system lightning performance Part I: Model and numerical solution using the PSCAD-EMTDC platform”, IEEE Trans. Electromagn. Compat. 59(1), 137‒145 (2017).
  13.  M.E.M. Rizk et al., “Protection Against Lightning-Induced Voltages: Transient Model for Points of Discontinuity on Multiconductor Overhead Line”, IEEE Trans. Electromagn. Compat. 62(4), 1209‒1218 (2020), doi: 10.1109/TEMC.2019.2940535.
  14.  J. Zhang et al., “Evaluation of the Lightning-Induced Voltages of Multiconductor Lines for Striking Cone-Shaped Mountain, ” IEEE Trans. Electromagn. Compat. 61(5), 1534‒1542 (2019).
  15.  Q. Li et al., “On the influence of the soil stratification and frequency-dependent parameters on lightning electromagnetic fields”, Electr. Power Syst. Res. 178, 1‒10(2020).
  16.  E. Soto and E. Perez, “Lightning-induced voltages on overhead lines over irregular terrains”, Electr. Power Syst. Res. 176, 105941 (2019).
  17.  M. Brignone, D. Mestriner, R. Procopio, M. Rossi, and F. Rachidi, “Evaluation of the mitigation effect of shield wires on lightning-induced overvoltages in MV distribution systems using statistical analysis”, IEEE Trans. Electromagn. Compat. 60(5), 1‒10 (2018).
  18.  M.R. Bank Tavakoli and B. Vahidi, “Shielding failure rate calculation by means of downward and upward lightning leader movement models: Effect of environmental conditions”, J. Electrostat. 68, 275‒283 (2010).
  19.  Y. Xu and M. Chen, “Striking Distance Calculation for Flat Ground and Lightning Rod by a 3D Self-Organized Leader Propagation Model”, Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
  20.  V. Cooray, C.A. Nucci, and F. Rachidi, “On the Possible Variation of the Lightning Striking Distance as Defined in the IEC Lightning Protection Standard as a Function of Structure Height”. Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
  21.  M.E.M. Rizk and G.N. Trinh, High voltage engineering, p. 804, Taylor and Francis Group, LLC, 2014.
  22.  Lightning protection guide. Dehn + Sohne GmbH + Co.KG., Germany, 2007/2012.
  23.  S. Takatoshi, “Lightning striking characteristics to tall structures”, IEEJ Trans. Electr. Electron. Eng. 13, 938‒947 (2017).
  24.  P.N. Mikropoulos and T.E. Tsovilis, “Striking Distance and Interception Probability, ” IEEE Trans. Power Delivery 23(3), 1571‒1580 (2008).
  25.  Y. Xie, M. Dong, H. He, J. He, H. Cai, and X. Chen, “A new tool for lightning performance assessment of overhead transmission lines”, Proc. 7th Asia-Pacific Int. Conf. Light., 2011, pp. 513‒519.
  26.  D. Spalek, “Proposal of the criterion for transmission line lumped parameters analysis”, Bull. Pol. Ac.: Tech. 67(6), 1181‒1186 (2019).
  27.  G. Benysek, M.P. Kazmierkowski, J. Popczyk, and R. Strzelecki, “Power electronic systems as a crucial part of Smart Grid infrastructure – a survey”, Bull. Pol. Ac.: Tech. 59(4), 455‒473 (2011).
  28.  S. Robak and R.M. Raczkowski, “Substations for offshore wind farms: a review from the perspective of the needs of the Polish wind energy”, Bull. Pol. Ac.: Tech. 66(4), 517‒528 (2018).
  29.  M. Borecki and J. Starzyński, “Selected Aspects of Numerical Models and Cost Comparison Analysis of Surge Protection Device”, Progress in Applied Electrical Engineering (PAEE), Poland, 2019, pp. 1‒4.
  30.  M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids”, Bull. Pol. Ac.: Tech. 68(4), 769‒776 (2020).
  31.  M. Borecki, “A Proposed New Approach for the Assessment of Selected Operating Conditions of the High Voltage Cable Line”, Energies 13, 5275(1‒15) (2020).
  32.  Z. Flisowski, Calculation of atmospheric surges in power lines based on antenna wave theory. Electrotechnical Dissertations, Volume XV, Z.1, pp. 177‒194, 1968.
  33.  M. Borecki, Analysis of atmospheric overvoltages protection of medium voltage overhead lines with covered conductors, pp. 1‒128, Warszawa, Wyd. P.W. 2017.

Date

26.01.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.135838

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; No. 1; e135838
×