Details
Title
Ensemble selection in one-versus-one scheme – case study for cutting tools classificationJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
No. 1Affiliation
Rojek, Izabela : Institute of Computer Science, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland ; Burduk, Robert : Faculty of Electronic, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland ; Heda, Paulina : Faculty of Electronic, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, PolandAuthors
Keywords
ensemble of classifiers ; ensemble selection ; one-vs-one decomposition ; cutting toolDivisions of PAS
Nauki TechniczneCoverage
e136044Bibliography
- C. Sammut and G. I. Webb, Encyclopedia of Machine Learning and Data Mining. Springer US, 2016.
- M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press, 2018.
- S. Osowski and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 517–525 (2019).
- O. Sagi and L. Rokach, “Ensemble learning: A survey”, Wiley Interdiscip. Rev.-Data Mining Knowl. Discov. 8(4), e1249 (2018).
- R.M. Cruz, R. Sabourin, and G.D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives”, Inf. Fusion 41, 195–216 (2018).
- O.A. Alzubi, J.A. Alzubi, M. Alweshah, I. Qiqieh, S. AlShami, and M. Ramachandran, “An optimal pruning algorithm of classifier ensembles: dynamic programming approach”, Neural Comput. Appl. 32, 16091–16107 (2020).
- Y. Bian, Y. Wang, Y. Yao, and H. Chen, “Ensemble pruning based on objection maximization with a general distributed framework”, IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3766‒3774 (2020).
- R.M. Cruz, D.V. Oliveira, G.D. Cavalcanti, and R. Sabourin, “Fire-des++: Enhanced online pruning of base classifiers for dynamic ensemble selection”, Pattern Recognit. 85, 149–160 (2019).
- T.T. Nguyen, A.V. Luong, M.T. Dang, A.W.-C. Liew, and J. McCall, “Ensemble selection based on classifier prediction confidence”, Pattern Recognit. 100, 107104 (2020).
- Z.-L. Zhang, X.-G. Luo, S. García, J.-F. Tang, and F. Herrera, “Exploring the effectiveness of dynamic ensemble selection in the one- versus-one scheme”, Knowledge-Based Syst. 125, 53–63 (2017).
- M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers”, Pattern Recognit. 46(12), 3412–3424 (2013).
- M. Pawlicki, A. Giełczyk, R. Kozik, and M. Choraś, “Faultprone software classes recognition via artificial neural network with granular dataset balancing”, in International Conference on Computer Recognition Systems 2019, Springer, 2019, pp. 130–140.
- D. Rajeev, D. Dinakaran, and S. Singh, “Artificial neural network based tool wear estimation on dry hard turning processes of aisi4140 steel using coated carbide tool”, Bull. Pol. Ac.: Tech. 65(4), 553–559 (2017).
- D. Więcek, A. Burduk, and I. Kuric, “The use of ann in improving efficiency and ensuring the stability of the copper ore mining process”, Acta Montanistica Slovaca 24(1), 1‒14 (2019).
- P. Raja, R. Malayalamurthim, and M. Sakthivel, “Experimental investigation of cryogenically treated hss tool in turning on aisi1045 using fuzzy logic–taguchi approach”, Bull. Pol. Ac.: Tech. 67(4), 687–696 (2019).
- T. Andrysiak and L. Saganowski, “Anomaly detection for smart lighting infrastructure with the use of time series analysis”, J. UCS 26(4), 508–527 (2020).
- A. Burduk, K. Musiał, J. Kochańska, D. Górnicka, and A. Stetsenko, “Tabu search and genetic algorithm for production process scheduling problem”, LogForum 15, 181–189 (2019.
- M. Choraś, M. Pawlicki, D. Puchalski, and R. Kozik, “Machine learning–the results are not the only thing that matters! what about security, explainability and fairness?”, in International Conference on Computational Science, Springer, 2020, pp. 615–628.
- P. Zarychta, P. Badura, and E. Pietka, “Comparative analysis of selected classifiers in posterior cruciate ligaments computer aided diagnosis”, Bull. Pol. Ac.: Tech. 65(1), 63–70 (2017).
- I. Rojek, E. Dostatni, and A. Hamrol, “Ecodesign of technological processes with the use of decision trees method”, in International Joint Conference SOCO’17-CISIS’17-ICEUTE’17, León, Spain, 2017, Springer, 2018, pp. 318–327.
- I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Ac.: Tech. 68(2), 199–206 (2020).
- P. Prokopowicz, D. Mikołajewski, K. Tyburek, and E. Mikołajewska, “Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks”, Bull. Pol. Ac.: Tech. 68(2), 191–198 (2020).
- S. Igari, F. Tanaka, and M. Onosato, “Customization of a micro process planning system for an actual machine tool based on updating a machining database and generating a database-oriented planning algorithm”, Trans. Inst. Syst. Control Inform. Eng. 26(3), 87–94 (2013).
- C. Tan and S. Ranjit, “An expert carbide cutting tools selection system for cnc lathe machine”, Int. Rev. Mech. Eng. 6(7), 1402–1405 (2012).
- I. Rojek, “Technological process planning by the use of neural networks”, AI EDAM – AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf. 31(1), 1–15 (2017).
- P. Heda, I. Rojek, and R. Burduk, “Dynamic ensemble selection – application to classification of cutting tools”, in International Conference on Computer Information Systems and Industrial Management LNCS(12133), Springer, 2020, pp. 345–354.
- L.I. Kuncheva, Combining Pattern Classifiers. John Wiley & Sons, Inc., 2014.
- E. Santucci, L. Didaci, G. Fumera, and F. Roli, “A parameter randomization approach for constructing classifier ensembles”, Pattern Recognit. 69, 1–13 (2017).
- M. Mohandes, M. Deriche, and S. O. Aliyu, “Classifiers combination techniques: A comprehensive review”, IEEE Access 6, 19626–19639 (2018).
- J. Yan, Z. Zhang, K. Lin, F. Yang, and X. Luo, “A hybrid scheme-based one-vs-all decision trees for multi-class classification tasks”, Knowledge-Based Syst. 198. 105922 (2020).
- P. Chaitra and R.S. Kumar, “A review of multi-class classification algorithms”, Int. J. Pure Appl. Math. 118(14), 17–26 (2018).
- M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “An overview of ensemble methods for binary classifiers in multi- class problems: Experimental study on onevs-one and one-vs-all schemes”, Pattern Recognit. 44(8), 1761–1776 (2011).
- R. Burduk, “Integration base classifiers based on their decision boundary”, in International Conference on Artificial Intelligence and Soft Computing, Springer, 2017, pp. 13–20.
- M.P. Groover, Fundamentals of modern manufacturing: materials, processes and systems, Willey, 2010.
- M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks”, Inf. Process. Manage. 45, 427–437 (2009).
- I. Rojek, “Classifier models in intelligent capp systems”, in Man-Machine Interactions, pp. 311–319, Springer, 2009.