Details
Title
Influence of Microwave Heating on the Molding Mass with Gypsum Binder Structure and StrengthJournal title
Archives of Foundry EngineeringYearbook
2021Volume
vo. 21Issue
No 1Affiliation
Paduchowicz, P.J. : Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland ; Granat, K. : Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland ; Biały, P. : Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, PolandAuthors
Keywords
Foundry ; Foundry materials and technologies ; Plaster gypsum ; Molding and core sands ; Strength of massesDivisions of PAS
Nauki TechniczneCoverage
113-118Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Borkowska, M. & Smulikowski, K. (1973). Rock forming minerals. Warszawa: Wydawnictwa Geologiczne. (in Polish).[2] Lopez-Beceiro J., Gracia-Fernandez C., Tarrio-Saavedra J., Gomez-Barreiro S. & Artiaga R. „Study of gypsum by PDSC”. Journal of Thermal Analysis and Calorimetry (2012) 109: 1177-1183.
[3] Balance of mineral resources management in Poland and the world. Polish Geological Institute, Research Institute. Warszawa 2014. (in Polish)
[4] Chłądzyński, S. & Pichniarczyk, P. (2006). Gypsum and gypsum products in European standards. Materiały Budowlane. 6(10), 42-46. (in Polish).
[5] Akerman, K. (1964). Gypsum and anhydrite. Warszawa: PWN. (in Polish).
[6] Hazzat M., Sifou A., Ansalane S. & Hamidi A. (2019). Novel approach to termal degradation kinetics of gypsum: application of peak deconvolution and Model-Free isoconversional method. Journal of Thermal Analysis and Calorimetry. 140 (2).
[7] Badens E., Veesler S., Bojstelle R. (1999). Crystallization of gypsum from hemihydrate in presence of additives. Journal of Crystal Growth. 198-199. P. 704-709.
[8] Singh N.B., Middendorf B. (2007). Calcium sulphate hemihydrate hydratation leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials. (53)7. 57-77.
[9] Pigiel M. & Granat K. (1997). Application of microwave heating in foundry. Krzepnięcie Metali i Stopów. 33/35. (in Polish).
[10] Parosa R. & Reszke E. (2000). Application of the microwave technique in foundry. Krzepnięcie Metali i Stopów. 2(2000), 419-425. (in Polish).
[11] Pawlak M. (2010). The influence of composition of gypsum plaster on its technological properties. Archives of Foundry Engineering. 10(4/2010), 55-60.
[12] Granat K., Paduchowicz P., Dziedzic A., Jamka M. & Biały P. (2020). Impact of hardening methods on the moulding sand’s properties with gypsum binder. Archives of Foundry Engineering. 4(20). 13-17. doi: 10.24425/afe.2020.133342.
[13] Nowak D., Gal B., Włodarska A. & Granat K. (2019). The influence of microwave drying parameters on the properties of synthetic moulding sands. Archives of Foundry Engineering. 4(19). 51-54.
[14] Gupta M. & Leong W. W. (2007). Microwaves and etals. Wiley. Azja 2007.
[15] Kowalski S., Rajewska K. & Rybicki A. Fizyczne podstawy suszenia mikrofalowego. Poznań: Wydawnictwo Politechniki Poznańskiej 2005 (in Polish).
[16] Kaczmarska K., Grabowska B. & Drożyński D. (2014). Analysis of selected properties of microwave-hardened molding sands bound with starch-based binders. Archives of Foundry Engineering. 4(14). 51-54. (in Polish).
[17] Banaszak J. & Rajewska K. (2013). Microwave drying of ceramic masses. Materiały odlewnicze. 2(2013), 180-185. (in Polish).
[18] Biały P. (2019). Selection of the method for curing environment-friendly moulding sands with a gypsum binder. Unpublished master thesis, Wroclaw University of Science and Technology, Wrocław, Poland. (in Polish).
[19] Zhenjun W., Nan D., Xiaofeng W. & Jie Z. (2020). Laboratory investigation of effects of microwave heating on early strength of cement bitumen emulsion mixture. Construction and Building Materials. 236(20). doi: 10.1016/j.conbuildmat.2019.117439
[20] Jinxin H., Guang X., Yunpei L., Guozung H. & Ping C. (2020). “Improving coal permeability using microwave heating technology – A rewiev”. Fuel. 266(2020). 10.1016/j.fuel.2020.117022
[21] Chaouki J., Farag S., Attia M. & Doucet J. (2020). The development of industrial (thermal) processes in the context of sustainability: The case of microwave heating. The Canadian Journal of Chemical Engineering. 98(2020). 832-847.
[22] Gajmal S. & Raut D.N. (2019). A review of opportunities and challenges in microwave assisted casting. Recent Trends i Production Engineering. 2(2019). 1-17.
[23] Paduchowicz P., Stachowicz M., Baszczuk A., Hasiak M. & Granat K. (2020). Evaluation of the chemical composition, TG – DTA and tensile strength tests of commercial gypsum kinds for foundry sandmixes application. Archives of Foundry Engineering. 2(20), 59-64.
[24] Dolina Nidy company catalog (2013 Juli). Technical data sheet. Retrieved Januar 7, 2016, from http://www.dolinanidy.com.pl/images/stories/pdf/gb.pdf
[25] Lewandowski J. L. (1997). Materials for foundry mass. Kraków: Akapit. (in Polish).
[26] Blajerska, P. (2016). Determination of the possible applicability of microwave in production of casting plaster mould. Unpublished master thesis, Wroclaw University of Science and Technology, Wrocław, Poland. (in Polish).
[27] Paduchowicz P, Stachowicz M. & Granat K. (2017). Effect of microwave heating on moulding sand properties with gypsum binder. Archives of Foundry Engineering. 3(2017), 97-102.
[28] PN-83 / H-11070
[29] PN-83/H-11073