Details
Title
Use of Selective Laser Melting (SLM) as a Replacement for Pressure Die Casting Technology for the Production of Automotive CastingJournal title
Archives of Foundry EngineeringYearbook
2021Volume
vo. 21Issue
No 2Affiliation
Piekło, J. : AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, Poland ; Garbacz-Klempka, A. : AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, PolandAuthors
Keywords
Additive manufacturing (AM) ; Selective Laser Melting (SLM) ; Automotive casting ; AlSi10Mg ; Mechanical properties ; MicrostructureDivisions of PAS
Nauki TechniczneCoverage
9-16Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Additive Manufacturing General Principes Terminology (2015). ISO/ASTM 2900:2015. BSI: London, UK.[2] Frazier, W.E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance. 23, 1917-1928. DOI: 10.1007/s11665-014-0958-z.
[3] Sercombe, T.B. & Li, X. (2016). Selective laser melting of aluminum and aluminum metal matrix composites. Review. Materials Technology. 31(2), 77-85. DOI: 10.1179/1753555715Y.0000000078.
[4] Yadroitsev, I., Yadroitsava, I., Bertrand, P. & Smurov, I. (2012). Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyping Journal. 18(3), 201-208. DOI: 10.1108/13552541211218117.
[5] Olakanmi, E.O. (2013). Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties. Journal of Materials Processing Technology. 213(8), 1387-1405. DOI: 10.1016/j.jmatprotec.2013.03.009.
[6] Gibson, I., Rosen, D.W. & Stucker, B. (2010). Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing. Springer New York Heidelberg Dordrecht London. DOI: 10.1007/978-1-4419-1120-9.
[7] Kempen, K., Thijs, L., Van Humbeeck, J. & Kruth, J.P. (2015). Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterization. Materials Science and Technology. 31(8), 917-923, DOI: 10.1179/1743284714Y.0000000702.
[8] Aboulkhair, N.T., Everitt, N.M., Ashcroft, I. & Tuck, C.N. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing. 1-4, 77-86. DOI: 10.1016/j.addma.2014.08.001.9.
[9] Read, N., Wang, W. & Essa, K. & Attallah, M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design. 65, 417-424. DOI: 10.1016/J.MATDES.2014.09.044.
[10] Lam, L.P., Zhang, D.Q., Liu, Z.H. & Chua, C.K. (2015). Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting. Virtual and Physical Prototyping. 10 (4), 207-215. DOI: 10.1080/17452759.2015.1110868.
[11] EOS Material data sheet, EOS Aluminium AlSi10Mg. www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material- datasheet/aluminium/alsi10mg-9011-0024-m400_flexline_material_data_sheet_03-18_en.pdf.
[12] Concept Laser a GE Additive Company, CL 32 Al. Aluminium alloy. www.ge.com/additive/sites/default/files/ 2018-12/CL 32AL_DS_DE_US_v1.pdf.
[13] Li, W., Li, S., Liu, J., Zhang, Y., Wei, Q., Yan, C. & Shi, Y. (2016). Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Materials Science and Engineering A. 663, 116-125. DOI: 10.1016/j.msea.2016.03.088.
[14] Thijs, L., Kempen, K., Kurth, J.P. & Van Humbeeck, J. (2013). Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia. 61(5), 1809-1819. DOI: 10.1016/j.actamat.2012.11.052.
[15] Brandl, E., Heckenberger, U., Holzinger, V. & Buchbinder, D. (2012). Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Materials & Design. 34, 159-169. DOI: 10.1016/j.matdes.2011.07.067.
[16] Piekło, J., Garbacz-Klempka, A., Żuczek, R. & Małysza, M. (2019). Computational modeling of fracture toughness of Al-Si, and Al-Zn-Mg-Cu alloys with detected porosity. Journal of Materials Engineering and Performance. 28, 1373-1381. DOI: 10.1007/s11665-019-03899-2.
[17] Zych, J., Piekło, J., Maj, M., Garbacz-Klempka, A. & Piękoś, M. (2019). Influence of structural discontinuities on fatigue life of 4XXX0-series aluminum alloys. Archives of Metallurgy and Materials. 64(2), 765-771. DOI: 10.24425/amm.2019.127611.
[18] Leary, M., Maconachie, T., Sarker, A. & Faruque, O. (2019). Mechanical and thermal characterisation of AlSi10Mg SLM block suport structures. Materials and Design. 183(5), 108-138. DOI: 10.1016/j.matdes.2019.108138.
[19] EOS Material data sheet, EOS MaragingSteel MS1. www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/werkzeugstahl_ms1_cx/ms1/ms-ms1-m280_m290_400w_material_data_sheet_05-14_en.pdf
[20] Waszkiewicz, S., Fic, M., Perzyk, M. & Szczepanik, J. (1986). Die and pressure molds. Warszawa: WNT. (in Polish).
[21] Piekło, J. (2019). Application of SLM additive manufacturing method in production of selected cooling system elements in die casting molds. Kraków: Wydawnictwo Naukowe Akapit. (in Polish).
[22] Piekło, J. & Maj, M. (2014). Methods of additive manufacturing used in the technology of skeleton castings. Archives of Metallurgy and Materials, 2014 ,59, 699-702. DOI: 10.2478/amm-2014-0114.
[23] Bonderek, Z. & Chromik, S. (2006). Metal pressure die-casting and plastic injection molding. Kraków: Wydawnictwo Naukowe Akapit. (in Polish).