Szczegóły

Tytuł artykułu

Microstructure and Thermoelectric Properties of Doped FeSi2 with Addition of B4C Nanoparticles

Tytuł czasopisma

Archives of Metallurgy and Materials

Rocznik

2021

Wolumin

vol. 66

Numer

No 4

Afiliacje

Dąbrowski, F. : Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland ; Ciupiński, Ł. : Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland ; Zdunek, J. : Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland ; Chromiński, W. : Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland ; Kruszewski, M. : Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland ; Zybała, R. : Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland ; Zybała, R. : Łukasiewicz Research Network, Institute of Microelectronics and Photonics, 32/46, Lotników Str., 02-668 Warszawa, Poland ; Michalski, A. : Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland ; Kurzydłowski, K.J. : Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland

Autorzy

Słowa kluczowe

iron disilicide ; nanoparticles ; thermoelectrics

Wydział PAN

Nauki Techniczne

Zakres

1157-1162

Wydawca

Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Committee of Materials Engineering and Metallurgy of Polish Academy of Sciences

Bibliografia

[1] S. Twaha, J. Zhu, Y. Yan, B. Li, A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement, Renewable and Sustainable Energy Reviews 65, 698-726 (2016).
DOI : https://doi.org/10.1016/j.rser.2016.07.034
[2] R .M. Ware, D.J. McNeill, Iron disilicide as a thermoelectric generator material, Proc. Inst. Electr. Eng. 111, 178 (1964). DOI : https://doi.org/10.1049/piee.1964.0029
[3] T. Kojima, Semiconducting and Thermoelectric Properties of Sintered Iron Disilicide, Phys. Stat. Sol. (A) 111, 233-242 (1989). DOI : https://doi.org/10.1002/pssa.2211110124
[4] M . Takeda, M. Kuramitsu, M. Yoshio, Anisotropic Seebeck coefficient in β-FeSi2 single crystal, Thin Solid Films 461, 179-181 (2004). DOI : https://doi.org/10.1016/j.tsf.2004.02.066
[5] M . Ito, T. Tada, S. Katsuyama, Thermoelectric properties of Fe0.98Co0.02Si2 with ZrO2 and rare-earth oxide dispersion by mechanical alloying, J. Alloys Compd. 350, 296-302 (2003). DOI : https://doi.org/10.1016/S0925-8388(02)00964-7
[6] K . Biswas, J. He, I. Blum, et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489, 414-418 (2012). DOI : https://doi.org/10.1038/nature11439
[7] A . Michalski, M. Rosiński, Pulse Plasma Sintering and Applications, Adv. Sinter. Sci. Technol. 219-226 (2017).
[8] K .F. Cai, C.W. Nan, X.M. Min, The effect of silicon addition on thermoelectric properties of a B4C ceramic, Materials Science and Engineering: B 67, 3, 1999, 102-107 (1999). ISSN 0921-5107. DOI : https://doi.org/10.1016/S0921-5107(99)00220-2
[9] Y. Ohba, T. Shimozaki, H. Era, Thermoelectric Properties of Silicon Carbide Sintered with Addition of Boron Carbide, Carbon, and Alumina, Materials Transactions 49, 6, 1235-1241 (2008). DOI : http://dx.doi.org/10.2320/matertrans.MRA2007232
[10] M .J. Kruszewski et al., Microstructure and Thermoelectric Properties of Bulk Cobalt Antimonide (CoSb3) Skutterudites Obtained by Pulse Plasma Sintering, J. Electron. Mater. 45, 1369-1376 (2016). DOI : https://doi.org/10.1007/s11664-015-4037-5
[11] A. Michalski, D. Siemiaszko, Nanocrystalline cemented carbides sintered by the PPS method, Int. J. Refract. Met. Hard Mater. 25, 153 (2007). DOI : https://doi.org/10.1016/j.ijrmhm.2006.03.007
[12] A.M. Abyzov, M.J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, K.J. Kurzydłowski, Diamond-tungsten based coating- copper composites with high thermal conductivity produced by Pulse Plasma Sintering, Mater. Des. 76, 97 (2015). DOI : https://doi.org/10.1016/j.matdes.2015.03.056
[13] J. Grzonka, J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, K.J. Kurzydłowski, Interfacial microstructure of copper/ diamond composites fabricated via a powder metallurgical route, Mater. Charact. 99, 188 (2015). DOI : https://doi.org/10.1016/j.matchar.2014.11.032
[14] M. Rosiński, J. Wachowicz, T. Płociński, T. Truszkowski, A. Michalski, Properties of WCCO/diamond composites produced by PPS method intended for drill bits for machining of building stones, Ceram. Trans. 243, 181 (2014). DOI : https://doi.org/10.1002/9781118771464
[15] W. Liu, X. Yan, G. Chen, Z. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy 1, 42-56 (2012). DOI : https://doi.org/10.1016/j.nanoen.2011.10.001
[16] F. Dąbrowski, Ł. Ciupiński, J. Zdunek, J. Kruszewski, R. Zybała, A. Michalski, K.J. Kurzydłowski, Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sintering, Materials Today: Proceedings 8, 2, 531-539 (2019). DOI : https://doi.org/10.1016/j.matpr.2019.02.050
[17] M. Ito, H. Nagai, S. Katsuyama, K. Majima, Thermoelectric properties of β-FeSi2 with B4C and BN dispersion by mechanical alloying, J. Mat. Science 37, 2609-2614 (2002). DOI : https://doi.org/10.1023/A:1015891811725
[18] M . Ito, H. Nagai, T. Tanaka, S. Katsuyama, K. Majima, Thermoelectric performance of n-type and p-type β-FeSi2 prepared by pressureless sintering with Cu addition, J. Alloys Compd. 319, 303-311 (2001). DOI : https://doi.org/10.1016/S0925-8388(01)00920-3
[19] N . Niizeki, et al., Effect of Aluminum and Copper Addition to the Thermoelectric Properties of FeSi2 Sintered in the Atmosphere, Mater. Trans. 50, 1586-1591 (2009). DOI : https://doi.org/10.2320/matertrans.E-M2009808
[20] A . Heinrich, et al., Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films, Thin Solid Films 381, 287-295 (2001). DOI : https://doi.org/10.1016/S0040-6090(00)01758-2
[21] K. Nogi, T. Kita, Rapid production of β-FeSi2 by spark-plasma sintering, J. Mater. Sci. 35, 5845-5849 (2000). DOI : https://doi.org/10.1023/A:1026752206864
[22] J. Tani, H. Kido, Electrical properties of Co-doped and Ni-doped β-FeSi2, J. Appl. Phys. 84, 1408 (1998). DOI : https://doi.org/10.1063/1.368174
[23] H . Nagai, M. Ito, S. Katsuyama, K. Majima, The Effect of Co and Ni Doping on the Thermoelectric Properties of Sintered β-FeSi2, Journal of the Japan Society of Powder and Powder Metallurgy, Released December 04, 2009. DOI : https://doi.org/10.2497/jjspm.41.560
[24] H.Y. Chen, X.B. Zhao, C. Stiewe, D. Platzek, E. Mueller, Microstructures and thermoelectric properties of Co-doped iron disilicides prepared by rapid solidification and hot pressing, J. Alloys Compd. 433, 338-344 (2007). DOI : https://doi.org/10.1016/j.jallcom.2006.06.080
[25] Y . Ohta, S. Miura, Y. Mishima, Thermoelectric semiconductor iron disilicides produced by sintering elemental powders, Intermetallics, 7, 1203-1210 (1999). DOI : https://doi.org/10.1016/S0966-9795(99)00021-7
[26] H .Y. Chen, X.B. Zhao, T.J. Zhu, Y.F. Lu, H.L. Ni, E. Muller, A. Mrotzek, Influence of nitrogenizing and Al-doping on microstructures and thermoelectric properties of iron disilicide materials, Intermetallics 13, 704-709 (2005). DOI : https://doi.org/10.1016/j.intermet.2004.12.019
[27] M . Ito, H. Nagai, E. Oda, S. Katsuyama, K. Majima, Effects of P doping on the thermoelectric properties of β-FeSi2, J. Appl. Phys. 91, 2138-2142 (2002). DOI : https://doi.org/10.1063/1.1436302
[28] X. Qu, S. Lü, J. Hu, Q. Meng, Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering, J. Alloys Compd. 509, 10217-10221 (2011). DOI : https://doi.org/10.1016/j.jallcom.2011.08.070
[29] Y. Ma, R. Heijl, A.E.C. Palmqvist, Composite thermoelectric materials with embedded nanoparticles, J Mater Sci 48, 2767-2778 (2013). DOI : https://doi.org/10.1007/s10853-012-6976-z
[30] T. Wejrzanowski, Computer Assisted Analysis of Gradient Materials Microstructure, Masters Thesis, Warsaw University of Technology (2000).
[31] K. Nogi, T. Kita, X-Q. Yan, Optimum Sintering and Annealing Conditions for β-FeSi2 Formed by Slip Casting, J. Ceram. Soc. Japan 109, 265-269 (2001). DOI : https://doi.org/10.2109/jcersj.109.1267_265
[32] G. Shao, K.P. Homewood, On the crystallographic characteristics of ion beam synthesized, Intermetallics 8, 1405-1412 (2000). DOI : https://doi.org/10.1016/S0966-9795(00)00090-X

Data

2021.12.28

Typ

Article

Identyfikator

DOI: 10.24425/amm.2021.136436 ; e-ISSN 2300-1909

Źródło

Archives of Metallurgy and Materials
×