Details
Title
The composting of PLA/HNT biodegradable composites as an eco-approach to the sustainabilityJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
2Affiliation
Czarnecka-Komorowska, Dorota : Institute of Materials Technology, Polymer Processing Division; Poznan University of Technology, 60-965 Poznan, Poland ; Bryll, Katarzyna : Department of Machines Construction and Materials, Maritime University of Szczecin, 71-650 Szczecin, Poland ; Kostecka, Ewelina : Department of Machines Construction and Materials, Maritime University of Szczecin, 71-650 Szczecin, Poland ; Tomasik, Małgorzata : Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland ; Piesowicz, Elżbieta : Institute of Material Science and Engineering, West Pomeranian University of Szczecin, 70-310 Szczecin, Poland ; Gawdzińska, Katarzyna : Department of Machines Construction and Materials, Maritime University of Szczecin, 71-650 Szczecin, PolandAuthors
Keywords
polymer composite materials (PMC) ; biocomposites ; polylactic acid (PLA) ; halloysite ; composting process ; performance propertiesDivisions of PAS
Nauki TechniczneCoverage
e136720Bibliography
- M. Rybaczewska-Błażejowska and A. Mena-Nieto, “Circular economy: comparative life cycle assessment of fossil polyethylene terephthalate (PET) and its recycled and bio-based counterparts”, Manag. Prod. Eng. Rev. 11(4), 121–12 (2020).
- D. Czarnecka-Komorowska and K. Wiszumirska, “Sustainability design of plastic packaging for the Circular Economy”, Polimery 65(1), 8–17 (2020).
- J. Flizikowski and M. Macko, ”Competitive design of shredder for plastic in recycling. Ed. By I. Horvath, P. Xirouchakis, in Proc. of 2004 5th International Symposium on Tools and Methods of Competitive Engineering, Lausanne, Switzerland, 2004, pp. 1147‒1148.
- P. Wiseman, Petrochemicals, Wiley, New York.1986.
- P. Krawiec, L. Różanski, D. Czarnecka-Komorowska, and Ł. Warguła, “Evaluation of the Thermal Stability and Surface Characteristics of Thermoplastic Polyurethane V-Belt”, Materials 13(7), 1502 (2020).
- V. Siracusa, P. Rocculi, S. Romani, and M.D. Rosa, “Biodegradable polymers for food packaging: a review”, Trends Food Sci. Technol. 19(12), 634‒643 (2008).
- J.H. Song, R.J. Murphy, R. Narayan, and G.B.H. Davies, “Biodegradable and compostable alternatives to conventional plastics”, Phil. Trans. Roy. Soc. London B 364(1526), 2127–2139 (2009).
- I. Wojnowska-Baryła, D. Kulikowska, and K. Bernat, “Effect of Bio-Based Products on Waste Management”, Sustainability 12(5), 2088 (2020).
- P. Sakiewicz, R. Nowosielski, W. Pilarczyk, K. Gołombek, and M. Lutyński, “Selected properties of the halloysite as a component of Geosynthetic Clay Liners (GCL)”, J. Achiev. Mater. Manuf. Eng. (2), 177‒191 (2011).
- Y. Tokiwa and B.P. Calabia, “Biodegradability and biodegradation of poly(lactide)”, Appl. Microbiol. Biotechnol, 72(2), 244–251 (2006).
- H. Nishida and Y. Tokiwa, “Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. I. Effects of heat treatment on microbial degradation”, J. Appl. Polym. Sci. 46(8), 1467–1476 (1992).
- F. Razza, M. Fieschi, F.D. Innocent, and C. Bastioli, “Compostable cutlery and waste management: An LCA”, Waste Manag. 29, 1424‒1433 (2009).
- APME 2002, “Using waste plastic as a substitute for coal”, Warmer Bull. 83, 20‒21 (2002).
- ASTM 2002, “Standard specification for compostable plastics (Designation: D 6400‒99)”, ASTM International, USA 2002.
- R. Narayan, ”Biobased and biodegradable polymer materials: Rationale, drivers, and technology exemplars”, ACS Symposium Series 939(18), 282‒306 (2006).
- H. Saveyn and P. Eder, “Kryteria end-of-waste dla odpadów biodegradowalnych poddawanych obróbce biologicznej (kompost i fermentat): Propozycje techniczne”, Luxembourg, Publications Office of the European Union, 2014.
- W. Sikorska, M. Musioł, J. Rydz, M. Kowalczuk, and G. Adamus, “Industrial composting as a waste management method of polyester materials obtained from renewable sources”, Polimery 11‒12, 818‒827 (2019).
- J.S. Yaradoddi et al., “Alternative and Renewable Bio-based and Biodegradable Plastics”, in Handbook of Ecomaterials, eds. L. Martínez, O. Kharissova, B. Kharisov, Springer, Cham, 2019.
- I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad Sci. Tech. Sci. 68(2), 199‒206 (2020).
- A. Höglund, K. Odelius, and A.C. Albertsson, “Crucial Differences in the Hydrolytic Degradation between Industrial Polylactide and Laboratory-Scale Poly(L-lactide)”, ACS Appl. Mater. Interfaces 4‒5, 2788‒2793 (2012).
- L. Avérous, “Polylactic acid: Synthesis, properties and applications”, in Monomers, Polymers and Composites from Renewable Resources, pp. 433–450, eds. M.N. Belgacem, A. Gandini, Elsevier; Oxford, UK, 2008.
- G. Kale et al., “Compostability of Bioplastic Packaging Materials: An Overview”, Macromol. Biosci. 7(3), 255‒277 (2007).
- T. Iwata and Y. Doi, “Morphology and enzymatic degradation of poly(L-lactic acid) single crystals, Macromolecules 31(8), 2461–2467 (1998).
- R.T. McDonald, S. McCarthy, and R.A. Gross, “Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity”, Macromolecules 29(23), 7356–7361 (1996).
- H. Tsuji and S. Miyauchi, “Poly(L-lactide): VI. Effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region”, Polym. Degrad. Stab. 71(3), 415–424 (2001).
- Y. Tokiwa and T. Suzuki, “Hydrolysis of polyesters by Rhizopus delemar lipase”, Agric. Biol. Chem. 42(5), 1071–1072 (1978).
- S. Li and S. McCarthy, “Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s”, Macromolecules 32(13), 4454–4456 (1999).
- A.Torres, A.S.M. Li, S. Roussos, and M. Vert, “Degradation of L-and DL-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida”, J. Environ. Polym. Degrad. 4, 213–223 (1996).
- T. Ohkita and S.H. Lee, “Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites”, J. Appl. Polym. Sci. 100(4), 3009–3017 (2006).
- H. Urayama, T. Kanamori, and Y. Kimura “Properties and biodegradability of polymer blends of poly(l-lactide)s with different optical purity of the lactate units”, Macromol. Mater. Eng. 287(2), 116–121 (2002).
- O. Gil-Castell et al., “Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost”, Polym. Degrad. Stab. 158, 40–51 (2018).
- J. Giri et al., “Compostable composites of wheat stalk micro- and nanocrystalline cellulose and poly(butylene adipate-co-terephthalate): Surface properties and degradation behavior”, J. Appl. Polym. Sci. 136(43), 48149 (2019).
- P. Olsén, N. Herrera, and L.A. Berglund, “Toward biocomposites recycling: localized interphase degradation in PCL-cellulose biocomposites and its mitigation”, Biomacromolecules 21(5), 1795–1801 (2020).
- L. Mespouille, Ph. Degee, and Ph. Dubois, ”Amphiphilic poly(N,N-dimethylamino-2-ethyl methacrylate)-g-poly(ε-caprolactone) graft copolymers: synthesis and characterisation”, Eur. Polym. J. 41(6), 1187‒1195 (2005).
- D. Neugebauer, “The synthesis of grafted copolymers by a combination of two controlled polymerization techniques”, Polimery 56(7‒8), 521‒629 (2011).
- NatureWorks catalogue [Online]. Available: http://www.cn-plas.com/uploads/soft/190227/3260HP.pdf (Accessed on 25 Oct. 2020).
- Sigma-Aldrich Catalogue [Online]. Available: https://www.sigmaaldrich.com/catalog/product/aldrich/685445?lang=pl®ion=PL (Accessed on 10 Oct. 2020).
- K. Gawdzińska, S. Paszkiewicz, E. Piesowicz, K. Bryll, I. Irska, A. Lapis, E. Sobolewska, A. Kochmańska, W. Ślączka, “ Preparation and characterization of hybrid nanocomposites for dental applications”, Applied Sciences 9(7), 1381 (2019).
- Polish standard PN-EN ISO 1183-1:2004. Plastics – Methods for determining the density of non-cellular plastics. Part 1: Immersion method, liquid pyknometer method and titration method (accessed on 28 Oct. 2020).
- Polish standard PN-EN ISO 179:2010. Plastics – Determination of Charpy impact properties – Part 1: Non-instrumented impact test. (accessed on 28 Oct. 2020).
- Polish standard PN-EN ISO 62:2008. Plastics – Determination of water absorption. (accessed on 29 Oct. 2020).
- W. Grellmann and S. Seidler, „Polymer Testing” Hanser Publications, OH, 2013.
- D. Czarnecka-Komorowska, E. Kostecka, K. Bryll, and K. Gawdzińska, „Analysis of the decomposition using the short degradation technique of polylactic acid/halloysite nanotube biocomposites”, Machine Modelling and Simulations MMS 2020 Conference, Tleń, 2020, (to be published).
- A. Fick, “On Liquid Diffusion”, Lond. Edinb. Dubl. Phil. Mag. 10, 30–39 (1855).
- A. Fick, “Ueber Diffusion (On Diffusion)”, Ann. Phys. Chemie von J.C. Poggendorffs 94, 59–86 (1855).
- Polish standard PN-EN ISO 868. Plastics and ebonite — Determination of indentation hardness by means of a durometer (Shore hardness). (accessed on 29 Oct. 2020).
- P. Russo, S. Cammarano, E. Bilotti, T. Peijs, P. Cerruti, and D. Acierno, ”Physical properties of poly lacticacid/clay nanocomposite films: Effect of filler content and annealing treatment”, J. Appl. Polym. Sci. 131(2), 39798 (2014).
- K. Prashantha, B. Lecouvet, M. Sclavons, M.F Lacrampe, and P. Krawczak, “Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment”, J. Appl. Polym. Sci. 128(3), 1895–1903, (2013).
- S. Montava-Jorda, V. Chacon, D. Lascano, L. Sanchez-Nacher, and N. Montanes, “Manufacturing and characterization of functionalized aliphatic polyester from poly(lactic acid) with halloysite nanotubes”, Polymers 11(8), 1314 (2019).
- M. Murariu, A.-L. Dechief, Y. Paint, S. Peeterbroeck, L. Bonnaud, and P. Dubois, “Polylactide (PLA)-halloysite nanocomposites: Production. morphology and key-properties”, J. Polym. Environ. 20(4), 932–943 (2012).
- D. Czarnecka, D. Ciesielska, and J. Jurga, “The brittle-ductile transition (BDT) in recycled polymers”, Proceeding of the Rewas’04, Global Symposium on Recycling, Waste Treatment and Clean Technology, Madrid, Spain, 2004.
- J.L. Thomason and M.A. Vlug, “Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 4. Impact properties”, Composites Part A 28A, 277‒288 (1997).
- Y. Chen, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, and D.M. Devine, “Halloysite nanotube reinforced polylactic acid composite”, Polym. Compos. 38(10), 2166–2017 (2017).
- S. Montava-Jorda, V. Chacon, D. Lascano, L. Sanchez-Nacher, and N. Montanes, “Manufacturing and characterization of functionalized aliphatic polyester from poly(lactic acid) with halloysite nanotubes”, Polymers 11(8), 1314 (2019).
- R. Kumar, M.K. Yakubu, and R.D. Anandjiwala, “Biodegradation of flax fiber reinforced poly lactic acid”, Express Polym. Lett. 4(7), 423–430 (2010).
- A.P. Mathew, K. Oksman, and M. Sain, “Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC)”, J. Appl. Polym. Sci. 97(5), 2014–2025 (2005).