Details

Title

Influence of lightning current surge shape and peak value on grounding parameters

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

2

Affiliation

Łukaszewski, Artur : Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland ; Nogal, Łukasz : Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

Authors

Keywords

grounding electrodes ; grounding impedance ; grounding coefficient ; transient response

Divisions of PAS

Nauki Techniczne

Coverage

e136730

Bibliography

  1.  K. Aniserowicz, “Analytical calculations of surges caused by direct lightning strike to underground intrusion detection system” Bull. Pol. Acad. Sci. Tech. Sci. 67(2), 263‒269 (2019), doi: 10.24425/bpas.2019.128118.
  2.  S. Czapp and J. Guzinski, “Electric shock hazard in circuits with variable-speed drives”, Bull. Pol. Acad. Sci. Tech. Sci. 66(3) 361‒372 (2018), doi: 10.24425/123443.
  3.  G. Parise, L. Parise, and L. Martirano, “Intrinsically safe grounding systems and global grounding systems”, IEEE Trans. Ind. Appl. 54(1), 25‒31 (2018), doi: 10.1109/TIA.2017.2743074.
  4.  R.M. Miśkiewicz, P. Anczewski, and A. J. Morandowicz, “Analysis and investigations of inductive power transfer (IPT) systems in terms of efficiency and magnetic field distribution properties”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 789‒797 (2019), doi: 10.24425/ bpasts.2019.130188.
  5.  S. Viscaro, “The use of the impulse impedance as a concise representation of grounding electrodes in lightning protection applications”, IEEE Trans. Electromagn. Compat. 60(5), 1602‒1605 (2018), doi: 10.1109/TEMC.2017.2788565.
  6.  K.S. Stiefanow, High Voltag Technique. 1st ed., Energy, pp. 380‒403, 1967. (orig.: К.С. Стефанов, Техника высоких напряжений, 1st ed, Энергия, pp. 380‒403, 1967).
  7.  L. Grcev, B. Markovski, V. Arnautovski-Toseva, and K.E.K. Drissi, “Transient analysis of grounding system without computer” in 2012 International Conference on Lightning Protection (ICLP), 2012, doi: 10.1109/ICLP.2012.6344412.
  8.  A. Geri, “Behaviour of grounding system exited by high impulse currents: the model and its validation”, IEEE Trans. Power Delivery 14(3), 1008‒1017 (1999), doi: 10.1109/61.772347.
  9.  S. Wojtas, “Ligtning impulse efficiency of horizontal earthings”, Electrical Review, 88(10b), 332‒334 (2012), [Online]. Available: pe.org. pl/abstract_pl.php?nid=6666 [Accessed: 13. Dec. 2020].
  10.  L. Grcev, “Modelling of grounding electrodes under lightning currents”, IEEE Trans. Electromagn. Compat. 51(3), 559‒571 (2009), doi: 10.1109/TEMC.2009.2025771.
  11.  J. Trifunovic and M.B. Kostic, “An alogirthm for estimating the grounding resistance of complex grounding systems including contact resistance”, IEEE Trans. Ind. Electron. 51(6), 5167‒5174 (2015), doi: 10.1109/TIA.2015.2429644.
  12.  D. Cavka, F. Rachidi, and D. Polijak, „On the concept of grounding impedance of multipoint grounding systems”, IEEE Electromagn. Compat. Mag. 56(6), 1540‒1544 (2014), doi: 10.1109/TEMC.2014.2341043.
  13.  R. Xiong, B. Chen Gao, Y. Yi, and W. Yang, “FDTD calculation model for tranient analyses of grounding systems”, IEEE Electromagn. Compat. Mag 56(5), 1155‒1162 (2014), doi: 10.1109/TEMC.2014.2313918.
  14.  A.F. Imece et al., “Modeling guidelines for fast front transients”, IEEE Trans. Power Delivery 11(1), 493‒506 (1996), doi: 10.1109/61.484134.
  15.  CIGRE, “Guide to procedures for estimating the lightning performance of transmission lines”, CIGRE Working Group 33.01 (Lightning) of Study Committee 33 (Overvoltage’s and Insulation Coordination), 1991. [Online]. Available: books.google.pl/books/about/Guide_to_ Procedures_for_Estimating_the_L.html?id=yFzqugAACAAJ&redir_esc=y [Accessed: 13. Dec. 2020].
  16.  M. Vasiliki and E. Pyrgioti, “Simulation of transient behavior of grounding grids” in 2010 International Conference on Lightning Protection (ICLP), 2010, doi: 10.1109/ICLP.2010.7845766.
  17.  A.G. Pedrosa, M.A. Schroeder, R.S. Alipio, and S. Visacro, “Influence of frequency dependant soil electrical parameters on the grounding response to lightning” in 2010 International Conference on Lightning Protection (ICLP), 2010, doi: 10.1109/ICLP.2010.7845953.
  18.  D.S. Gazzana, A.B. Trochoni, L.C. Leborgne, A.S. Betas, D.W.P Thomas, and C. Christopoulos, „An improved soil ionization representation to numerical simulation of impulsive grounding systems”, IEEE Trans. Magn. 54(3), 7200204 (2018), doi: 10.1109/TMAG.2017.2750019.
  19.  U.C. Resende, R. Alipio, and M. L.F. Oliviera, “Proposal for inclusion of the electrode radius in grounding systems analysis using interpolating element free Galerkin method”, IEEE Trans. Magn. 54(3), 7200304 (2018), doi: 10.1109/TMAG.2017.2771394.
  20.  M. Mokhtari and G.B. Gharehpetian, “Integration of energy balance of soil ionization in CIGRE grounding resistance model”, IEEE Electromagn. Compat. Mag. 60(2), 402‒413 (2018), doi: 10.1109/TEMC.2017.2731807.
  21.  O. Kherif, S. Chiheb, M. Teguar, A. Merkhaldi, and N. Harid, “Time-domain modeling of grounding systems’ impulse response incorporating nonlinear and frequency dependant aspects”, IEEE Electromagn. Compat. Mag. 60(4), 907‒916 (2018), doi: 10.1109/TEMC.2017.2751564.
  22.  S. Yang, W. Zhou, J. Huang, and J. Yu, “Investigation on impulse characteristics of full-scale grounding grid in substitution”, IEEE Electromagn. Compat. Mag. 60(6), 1993‒2001 (2018), doi: 10.1109/TEMC.2017.2762329.
  23.  E. Clavel, J. Roudet, J.M. Guichon, Z. Gouchiche, P. Joyeux, and A. Derbey, “A nonmashing approach for modeling grounding”, IEEE Electromagn. Compat. Mag. 60(3), 795‒802 (2018), doi: 10.1109/TEMC.2017.2743227.
  24.  R. Kosztaluk, M. Loboda, and D. Mukhedkar, „Experimental study of transient ground impedances”, IEEE Trans. Power Apparatus Syst. PAS-100(11), 4653‒4660 (1981), doi: 10.1109/TPAS.1981.316807.
  25.  F. Haidler and J. Cvetic, “A class of analytical functions to study lightning effects associated with the current front”, Eur. Trans. Electr. Power 12(2), 141‒150 (2002), doi: 10.1002/etep.4450120209.
  26.  S. Vujevic and D. Lovric, “Exponential approximation of the Heidler function for the reproduction of lightning current waveshapes”, Electr. Power Syst. Res. 80(10), 1293‒1298 (2010), doi: 10.1016/j.epsr.2010.04.012.
  27.  IEC, Protection against lightning – Part 1: General principles, IEC std. IEC 62305-1:2011. [Online]. Available: www.lsp-international. com/bs-en-62305-12011-protectionagainst-lightning-part-1-general-principles [Accessed: 13. Dec. 2020].
  28.  Cademce, “PSpice User’s Guide”, [Online]. Available: resources.pcb.candence.com/i/1180526-pspice-user-guide/20? [Accessed: 13. Dec. 2020].

Date

08.03.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.136730

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; 2; e136730
×