Details
Title
Allocation of real power generation based on computing over all generation cost: an approach of Salp Swarm AlgorithmJournal title
Archives of Electrical EngineeringYearbook
2021Volume
vol. 70Issue
No 2Affiliation
Devarapalli, Ramesh : Department of EE, B. I. T. Sindri, Dhanbad, Jharkhand – 828123, India ; Sinha, Nikhil Kumar : Department of EE, B. I. T. Sindri, Dhanbad, Jharkhand – 828123, India ; Rao, Bathina Venkateswara : Department of EEE, V R Siddhartha Engineering College (Autonomous), Vijayawada-520007, A.P., India ; Knypinski, Łukasz : Poznan University of Technology, Poland ; Lakshmi, Naraharisetti Jaya Naga : SR Engineering College: Warangal, Telangana, India ; Márquez, Fausto Pedro García : Ingenium Research Group, University of Castilla-La Mancha, SpainAuthors
Keywords
economic load dispatch ; heuristic algorithms ; optimization ; Particle Swarm Algorithm ; Salp Swarm AlgorithmDivisions of PAS
Nauki TechniczneCoverage
337-349Publisher
Polish Academy of SciencesBibliography
[1] Rogers G., Power systems oscillations, Springer Science & Business Media (2012).[2] Grainger J.J., StevensonW.D., Chang G.W., Power Systems Analysis, Mc Graw Hill Education (2003).
[3] Soft S., Power system economics: designing markets for electricity, Wiley-Interscience, Piscataway, NJ: New York (2002).
[4] Sheta A., Faris H., Braik M., Mirjalil S., Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparison Study, Applied Nature-Inspired Computing: Algorithms and Case Studies, Springer, pp. 199–230 (2020).
[5] Singht H.P., Singht Brar Y., Koyhari D.P., Reactive power based fair calculation approach for multiobjective load dispatch problem, Archives of Electrical Engineering, vol. 68, no. 4, pp. 719–735 (2019).
[6] Mistri A., Kumar Roy P., Mandal B., Chaotic biogeography-based optimization (CBBO) algorithm applied to economic load dispatch problem, Proceedings of National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA), Durgapur, India, pp. 1–5 (2020).
[7] Zhang Q., Zou D., Duan N., Shen X., An adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problem, Applied Soft Computing, vol. 78, pp. 641–669 (2019).
[8] Singh D., Dhillon J.S., Ameliorated greywolf optimization for economic load dispatch problem, Energy, vol. 169, pp. 398–419 (2019).
[9] Raja M.A.Z., Ahmed U., Zameer A., Kiani A.K., Chaudhary N.I., Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem, Neutral Computing and Applications, vol. 31, no. S1, pp. 447–475 (2019).
[10] Hr S., Kaboli A., Alqallaf A.K., Solving non-convex economic load dispatch problem via artificial cooperative search algorithm, Expert Systems with Applications, vol. 128, pp. 14–27 (2019).
[11] Al-Betar M.A., Awadallah M.A., Krishan M.M., A non-convex economic load dispatch problem with valve loading effect using a hybrid grey wolf optimizer, Neutral Computing and Applications, vol. 32, pp. 12127–12154 (2020).
[12] Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M., Salp SwarmAlgorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software, vol. 114, pp. 163–191 (2017).
[13] Yang B., Zhonga L., Zhang X., Shua H., Yu T., Li H., Sun L., Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition, Journal of Cleaner Production, vol. 215, pp. 1203–1222 (2019).
[14] Ibrahim R.A., Ewees A.A., Oliva D., Abd Elaziz M., Lu S., Improved salp swarm algorithm based on particle swarm optimization for feature selection, Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 8, pp. 3155–3169 (2019).
[15] Abbassi R., Abbassi A., Heidari A.A., Mirjalili S., An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models, Energy Conversion and Management, vol. 179, pp. 362–372 (2019).
[16] Sayed G.I., Khoriba G., Haggag M.H., A novel chaotic salp swarm algorithm for global optimization and feature selection, Applied Intelligence, vol. 48, no. 10, pp. 3462–3481 (2018).
[17] Faris H., Mafarjab M.M., Heidaric A.A., Aljarah I., Mirjalilid S., Fujitae H., An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems, Knowledge-Based Systems, vol. 154, pp. 43–67 (2018).
[18] Hussien A.G., Hassanien A.E., Houssein E.H., Swarming behaviour of salps algorithm for predicting chemical compound activities, Proceedings of International Conference on Intelligent Computing and Information (2017), DOI: 10.1109/INTELCIS.2017.8260072.
[19] Zhang J.,Wang J.S., Improved Salp Swarm Algorithm Based on Levy Flight and Sine Cosine Operator, IEEE Access, vol. 8, pp. 99740–99771 (2020).
[20] Patnana N., Pattnaik S., Varshney T., Singh V., Self-Learning Salp Swarm Optimization Based PID Design of Doha RO Plant, Algorithms, vol. 13, no. 287, pp. 1–14 (2020).
[21] Hussien A.G., Hassanien A.E., Houssein E.H., Swarming behaviour of salps algorithm for predicting chemical compound activities, Proceedings of International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, pp. 315–320 (2017).
[22] Khan I.A., Alghamdi A., Touqeer Ahmed Jumani T.A., Alamgir A., Ahmed Bilal Awan A., Attaullah Khidrani A., Salp SwarmOptimization Algorithm-Based Fractional Order PID Controller for Dynamic Response and Stability Enhancement of an Automatic Voltage Regulator System, Electronics, vol. 8, no. 12, pp. 1–17 (2019).
[23] Mutluer M., Sahman A., Cunkas M., Heuristic optimization based on penalty approach for surface permanent magnet synchronous machines, Arabian Journal for Science and Engineering, vol. 45, pp. 6751–6767 (2020).
[24] Knypinski Ł., Pawełoszek K., Le Manech Y., Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies, vol. 13, no. 5 (2020).
[25] Knypinski Ł., J˛edryczka C., Demenko A., Influence of the shape of squirrel cage bars on the dimensions of permanent magnets in an optimized line-start permanent magnet synchronous motor, COMPEL, vol. 36, no. 1, pp. 298–308 (2017).
[26] Kennedy J., Eberhart R., Particle Swarm Optimization, Proceedings of the International Conference on Neutral Networks, Perth, Australia, pp. 1942–1948 (1995).
[27] Freitas D., Guerreiro Lopes L., Morgado-Dias F., Particle Swarm Optimization : A historical review up to the current developments, Entropy, vol. 22, no. 362, pp. 1–36 (2020).