Details
Title
Dynamic interactions stability analysis of hybrid renewable energy system with SSSCJournal title
Archives of Electrical EngineeringYearbook
2021Volume
vol. 70Issue
No 2Affiliation
He, Ping : Zhengzhou University of Light Industry, No.5 Dongfeng Road, Jinshui District, Zhengzhou, 450002, China ; Qi, Pan : Zhengzhou University of Light Industry, No.5 Dongfeng Road, Jinshui District, Zhengzhou, 450002, China ; Ji, Yuqi : Zhengzhou University of Light Industry, No.5 Dongfeng Road, Jinshui District, Zhengzhou, 450002, China ; Li, Zhao : Zhengzhou University of Light Industry, No.5 Dongfeng Road, Jinshui District, Zhengzhou, 450002, ChinaAuthors
Keywords
damping characteristics ; dynamic interaction analysis ; eigenvalue analysis ; hybrid renewable energy system ; SSSCDivisions of PAS
Nauki TechniczneCoverage
445-462Publisher
Polish Academy of SciencesBibliography
[1] Yu S.L., Fernando T., Iu H.-H.-C., Dynamic behavior study and state estimator design for solid oxide fuel cells in hybrid power systems, IEEE Transaction on Power Systems, vol. 31, no. 6, pp. 5190–5199 (2016).[2] He P., Arefifar S.A., Li C.S., Small signal stability analysis of doubly-fed induction generator-integrated power systems based on probabilistic eigenvalue sensitivity indices, IET Generation, Transmission and Distribution, vol. 13, no. 14, pp. 3127–3137 (2019).
[3] YangY., Zhao J., Liu H., A matrix-perturbation-theory-based optimal strategy for small-signal stability analysis of large-scale power grid, Protection and Control of Modern Power Systems, vol. 3, no. 3, pp. 353–363 (2015).
[4] Liu J., Su C.,Wang C., Influence of solid oxide fuel cell on power system transient stability, The Journal of Engineering, vol. 2019, no. 16, pp. 1081–1086 (2019).
[5] Magdy G., Shabib G., Elbaset A.A., Optimized coordinated control of LFC and SMES to enhance frequency stability of a real multi-source power system considering high renewable energy penetration, Protection and Control of Modern Power Systems, vol. 3, no. 3, pp. 407–421 (2018).
[6] Du W.J., Wang H.F., Cai H., Modelling a grid-connected SOFC power plant into power systems for small-signal stability analysis and control, International Transactions on Electrical Energy Systems, vol. 23, no. 3, pp. 330–341 (2012).
[7] He P., Wu X.X., Li C.S., Damping characteristics improvement and index evaluation of a windpv- thermal-bundled power transmission system by combining PSS and SSSC, Archives of Electrical Engineering, vol. 69, no. 3, pp. 705–721 (2020).
[8] Vikash A., Sanjeev K.M., Power flow analysis and control of distributed FACTS devices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018).
[9] Bhushan R., Chatterjee K., Effects of parameter variation in DFIG-based grid connected system with a FACTS device for small-signal stability analysis, IET Generation, Transmission and Distribution, vol. 11, no. 11, pp. 2762–2777 (2017).
[10] Verveckken J., Silva F., Barros D., Direct power control of series converter of unified power-flow controller with three-level neutral point clamped converter, IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 1772–1782 (2012).
[11] Wang L., Vo Q.S., Power Flow Control and Stability Improvement of Connecting an Offshore Wind Farm to a One-Machine In?nite-Bus System Using a Static Synchronous Series Compensator, IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 358–369 (2013).
[12] Das D., Haque M.E., Gargoom A., Operation and control of grid integrated hybrid wind-fuel cell system with STATCOM, 22nd Australasian Universities Power Engineering Conference (AUPEC), Bali, pp. 1–6 (2012).
[13] Mahapatra S., Panda S., Swain S.C., A hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller design, Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1177–1188 (2014).
[14] Al-Sarray M., McCann R.A., Control of an SSSC for oscillation damping of power systems with wind turbine generators, IEEE Power and Energy Society Innovation Smart Grid Technologies Conference (ISGN), Washington, USA, pp. 1–5 (2017).
[15] Darabian M., Jalilvand A., Improving power system stability in the presence of wind farms using STATCOMand predictive control strategy, IETRenewable Power Generation, vol. 12, no. 1, pp. 98–111 (2018).
[16] Movahedi A., Halvaei Niasar A., Gharehpetian G.B., LVRT improvement and transient stability enhancement of power systems based on renewable energy resources using the coordination of SSSC and PSSs controllers, IET Renewable Power Generation, vol. 13, no. 11, pp. 1849–1860 (2019).
[17] Truong D.N., Ngo V.T., Designed damping controller for SSSC to improve stability of a hybrid offshore wind farms considering time delay, International Journal of Electrical Power and Energy Systems, vol. 65, no. 2, pp. 425–431 (2015).
[18] PramodKumar,Namrata K., Voltage control and power oscillation damping of multi-area power system using static synchronous series compensator, Journal of Electrical and Electronics Engineering, vol. 1, no. 5, pp. 26–33 (2012).
[19] Sahu P.R., Hota P.K., Panda S., Power system stability enhancement by fractional order multi input SSSC based controller employing whale optimization algorithm, Journal of Electrical Systems and Information Technology, vol. 5, no. 2018, pp. 326–336 (2018).
[20] Yu Y.N., Electric Power System Dynamics, Academic Press Inc (1983).
[21] He P.,Wen F.S., Ledwich G., An investigation on interarea mode oscillations of interconnected power systems with integrated wind farms, International Journal of Electrical Power and Energy Systems, vol. 78, no. 2, pp. 148–157 (2016).
[22] Wang L., Wang K.H., Dynamic stability analysis of a DFIG-based offshore wind farm connected to a power grid through an HVDC link, IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1501–1510 (2011).
[23] Sedghisigarchi K., Feliachi A., Dynamic and transient analysis of power distribution systems with fuel cells-Part II: Fuel-cell dynamic model, IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 429–434 (2016).
[24] Benabid R., Boudour M., Abido M.A., Development of a new power injection model with embedded multi-control functions for static synchronous series compensator, IET Generation, Transmission and Distribution, vol. 6, no. 7, pp. 680–692 (2012).
[25] Pradhan A.C., Lehn P.W., Frequency-domain analysis of the static synchronous series compensator, IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 440–449 (2006). [26] Kundur P., Power system stability and control, McGraw-Hill Press (1994).