Details

Title

Effect of surface roughness on steady performance of hydrostatic thrust bearings: Rabinowitsch fluids

Journal title

Archive of Mechanical Engineering

Yearbook

2021

Volume

vol. 68

Issue

No 2

Affiliation

Singh, Udaya P. : Rajkiya Engineering College, Sonbhadra, Uttar Pradesh, India

Authors

Keywords

hydrostatic lubrication ; pressurized bearings ; thrust bearings ; surface roughness ; cubic stress fluids

Divisions of PAS

Nauki Techniczne

Coverage

147-164

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the steady performance of hydrostatic thrust bearing: Rabinowitsch fluid model. Tribology Transactions, 54(5):723-729, 2011. doi: 10.1080/10402004.2011.597541.
[2] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the application of Rabinowitsch fluid model on an annular ring hydrostatic thrust bearing. Tribology International, 58:65-70, 2013. doi: 10.1016/j.triboint.2012.09.014.
[3] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the steady performance of annular hydrostatic thrust bearing: Rabinowitsch fluid model. Journal of Tribology, 134(4):044502, 2012. doi: 10.1115/1.4007350.
[4] B.J. Hamrock, S.R. Schmid, and B.O. Jacobson. Fundamentals of Fluid Film Lubrication. CRC Press, 2004. doi: 10.1201/9780203021187.
[5] R. Bassani and P. Piccigallo. Hydrostatic Lubrication, Elsevier, 1992.
[6] J.A. Coombs and D. Dowson. An experimental investigation of the effects of lubricant inertia in a hydrostatic thrust bearing. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 179(10):96-114, 1964. doi: 10.1243/PIME_CONF_1964_179_270_02.
[7] J. Peterson, W.E. Finn, and D.W. Dareing. Non-Newtonian temperature and pressure effects of a lubricant slurry in rotating hydrostatic step bearing. Tribology Transactions, 37(4):857-863, 1994. doi: 10.1080/10402009408983369.
[8] V.K. Kapur and K. Verma. The simultaneous effects of inertia and temperature on the performance of a hydrostatic thrust bearing. Wear, 54(1):113-122, 1979. doi: 10.1016/0043-1648(79)90050-4.
[9] P. Singh, B.D. Gupta, and V.K. Kapur. Design criteria for stepped thrust bearings. Wear, 89(1):41-55, 1983. doi: 10.1016/0043-1648(83)90213-2.
[10] S.C. Sharma, S.C. Jain, and D.K. Bharuka. Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing. Tribology International, 35(6):347-356, 2002. doi: 10.1016/S0301-679X(02)00013-0.
[11] Z. Tian, H. Cao, and Y. Huang. Static characteristics of hydrostatic thrust bearing considering the inertia effect on the region of supply hole. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 233(1):188-193, 2019. doi: 10.1177/1350650118773944.
[12] Y.K. Younes. A revised design of circular hydrostatic bearings for optimal pumping power. Tribology International, 26(3):195-200, 1993. doi: 10.1016/0301-679X(93)90093-G.
[13] O.J. Bakker and R.A.J. van Ostayen. Recess depth optimization for rotating, annular, and circular recess hydrostatic thrust bearings. Journal of Tribology, 132(1):011103, 2010. doi: 10.1115/1.4000545.
[14] H. Sawano, Y. Nakamura, H. Yoshioka, and H. Shinno. High performance hydrostatic bearing using a variable inherent restrictor with a thin metal plate. Precision Engineering, 41:78-85, 2015. doi: 10.1016/j.precisioneng.2015.02.001.
[15] J.S. Yadav and V.K. Kapur. On the viscosity variation with temperature and pressure in thrust bearing. International Journal of Engineering Science, 19(2):269-77, 1981. doi: 10.1016/0020-7225(81)90027-6.
[16] P. Zhicheng, S. Jingwu, Z. Wenjie, L. Qingming, and C. Wei. The dynamic characteristics of hydrostatic bearings. Wear, 166(2):215-220, 1993. doi: 10.1016/0043-1648(93)90264-M.
[17] J.R. Lin. Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids. Tribology International, 32(4):207-216, 1999. doi: 10.1016/S0301-679X(99)00034-1.
[18] H. Christensen. Stochastic models for hydrodynamic lubrication of rough surfaces. Proceedings of the Institution of Mechanical Engineers, 184(1):1013-1026, 1969. doi: 10.1243/PIME_ PROC_1969_184_074_02.
[19] J. Prakash and K. Tiwari. Effect of surface roughness on the squeeze film between rotating porous annular discs with arbitrary porous wall thickness. International Journal of Mechanical Sciences, 27(3):135-144, 1985. doi: 10.1016/0020-7403(85)90054-2.
[20] P. Singh, B.D. Gupta, and V.K. Kapur. Optimization of corrugated thrust bearing characteristics. Wear, 167(2):109-120, 1993. doi: 10.1016/0043-1648(93)90315-D.
[21] J.R. Lin. Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings. International Journal of Machine Tools and Manufacture, 40(11):1671-1689, 2000. doi: 10.1016/S0890-6955(00)00012-2.
[22] A.W. Yacout. The surfacse roughness effect on the hydrostatic thrust spherical bearings performance: Part 3 of 5 - Recessed clearance type of bearings. In Proceedings of the ASME International Mechanical Enginering Congress and Exposition, Volume 9: Mechanical Systems and Control, Parts A, B, and C, pages 431-447, Seattle, Washington, USA, November 11-15, 2007. doi: 10.1115/IMECE2007-41013.
[23] Y. Xuebing, X. Wanli, L. Lang, and H. Zhiquan. Analysis of the combined effect of the surface roughness and inertia on the performance of high-speed hydrostatic thrust bearing. In: Luo J., Meng Y., Shao T., Zhao Q. (eds): Advanced Tribology, 197-201, Springer, 2009. doi: 10.1007/978-3-642-03653-8_66.
[24] A. Walicka, E. Walicki, P. Jurczak, and J. Falicki. Thrust bearing with rough surfaces lubricated by an Ellis fluid. International Journal of Applied Mechanics and Engineering, 19(4):809-822, 2014. doi: 10.2478/ijame-2014-0056.
[25] V.K. Stokes. Couple stress in fluids. The Physics of Fluids, 9(9):1709-1715, 1966. doi: 10.1063/1.1761925.
[26] S. Wada and H. Hayashi. Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: Part 2, Experimental studies. Bulletin of JSME, 14(69):279-286, 1971. doi: 10.1299/jsme1958.14.279.
[27] H.A. Spikes. The behaviour of lubricants in contacts: current understanding and future possibilities. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 208(1):3-15, 1994. doi: 10.1243/PIME_PROC_1994_208_345_02.
[28] P. Bourging and B. Gay. Determination of the load capacity of finite width journal bearing by finite element method in the case of a non-Newtonian lubricant. Journal of Tribology, 106(2):285-290, 1984. doi: 10.1115/1.3260906.
[29] H. Hayashi and S. Wada. Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: Part 3, Theoretical analysis considering effects of correlation. Bulletin of JSME, 17(109):967-974, 1974. doi: 10.1299/jsme1958.17.967.
[30] H. Hashimoto and S. Wada. The effects of fluid inertia forces in parallel circular squeeze film bearings lubricated with pseudo-plastic fluids. Journal of Tribology, 108(2):282-287, 1986. doi: 10.1115/1.3261177.
[31] J.-R. Lin. Non-Newtonian effects on the dynamic characteristics of one dimensional slider bearings: Rabinowitsch fluid model. Tribology Letters, 10:237-243, 2001. doi: 10.1023/A:1016678208150.
[32] U.P. Singh, R.S. Gupta, and V.K. Kapur. Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model. Chemical and Process Engineering, 32(4):333-349, 2011. doi: 10.2478/v10176-011-0027-1.
[33] J.R. Lin. Non-Newtonian squeeze film characteristics between parallel annular disks: Rabinowitsch fluid model. Tribology International, 52:190-194, 2012. doi: 10.1016/j.triboint. 2012.02.017.
[34] U.P. Singh. Application of Rabinowitsch fluid model to pivoted curved slider bearings. Archive of Mechanical Engineering, 60(2):247-266, 2013. doi: 10.2478/meceng-2013-0016.
[35] U.P. Singh and R.S. Gupta. Dynamic performance characteristics of a curved slider bearing operating with ferrofluids. Advances in Tribology, 2012:1-6, 2012. doi: 10.1155/2012/278723.
[36] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the squeeze film characteristics between a long cylinder and a flat plate: Rabinowitsch model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(1):34-42, 2013. doi: 10.1177/1350650112458742.
[37] S.C. Sharma and S.K. Yadav. Performance of hydrostatic circular thrust pad bearing operating with Rabinowitsch fluid model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(11):1272-1284, 2013. doi: 10.1177/1350650113490147.
[38] Y. Huang and Z. Tian. A new derivation to study the steady performance of hydrostatic thrust bearing: Rabinowitch fluid model. Journal of Non-Newtonian Fluid Mechanics, 246:31-35, 2017. doi: 10.1016/j.jnnfm.2017.04.012.
[39] U.P. Singh, P. Sinha, and M. Kumar. Analysis of hydrostatic rough thrust bearing lubricated with Rabinowitsch fluid considering fluid inertia in supply region. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tibology, 235(2):386-395, 2021. doi: 10.1177/1350650120945887.
[40] A. Cameron. Basic Lubrication Theory, 3rd edition. E. Horwood, 1981.

Date

06.06.2021

Type

Article

Identifier

DOI: 10.24425/ame.2021.137045 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; Ahead of print
×