Details

Title

Ultrasonic specific absorption rate in nanoparticle-mediated moderate hyperthermia

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

3

Affiliation

Gambin, Barbara : Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland ; Kruglenko, Eleonora : Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland

Authors

Keywords

ultrasonic hyperthermia ; agar-based tissue mimicking phantom ; magnetic nanoparticles ; temperature ; specific absorption rate (SAR)

Divisions of PAS

Nauki Techniczne

Coverage

e137053

Bibliography

  1.  E. Ben-Hur, B.V. Bronk, and M.M. Elkind, “Thermally enhanced radiosensitivity of cultured Chinese hamster cells”, Nat. New Biol. 238, 209–211 (1972).
  2.  M.W. Dewhirst, E.J. Ozimek, J. Gross, and T.C. Cetas, “Will hyperthermia conquer the elusive hypoxic cell? Implications of heat effects on tumor and normal-tissue microcirculation”, Radiology 137(3), 811–817 (1980).
  3.  B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia”, Crit. Rev. Oncol./Hematol. 43(1), 33–56 (2002).
  4.  Z. Izadifar, P. Babyn, and D. Chapman, “Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge”, Ultrasound Med. Biol. 43(6), 1085–110 (2017).
  5.  A. Mizera and B. Gambin, “Stochastic modeling of the eukaryotic heat shock response”, J. Theor. Biol. 265, 455–466 (2010).
  6.  S.Z. Child, B. Vives, C.W. Fridd, J.D. Hare, C.A. Linke, H.T. Davis, and E.L. Carstensen, “Ultrasonic treatment of tumors— II: Moderate hyperthermia”, Ultrasound Med. Biol. 6(4), 341–344 (1980).
  7.  G. ter Haar, “The Resurgence of Therapeutic Ultrasound – A 21st Century Phenomenon”, Ultrasonics, 48(4), 233 (2008).
  8.  B. Gambin, T. Kujawska, E. Kruglenko, A. Mizera, and A. Nowicki, “Temperature Fields Induced by Low Power Focused Ultrasound in Soft Tissues During Gene Therapy, Numerical Predictions and Experimental Results”, Arch. Acoust. 34(4), 445–459 (2009).
  9.  A. Mizera, and B. Gambin, “Modelling of ultrasound therapeutic heating and numerical study of the dynamics of the induced heat shock response”, Commun. Nonlinear Sci. Numer. Simul. 16(5), 2342–2349 (2011).
  10.  A. Sohail, Z. Ahmad, O.A. Bég, S. Arshad, and L. Sherin, “A review on hyperthermia via nanoparticle-mediated therapy”, Bull. Cancer 104(5), 452–461 (2017).
  11.  S. Taghizadeh V. Alimardani, P.L. Roudbali, Y. Ghasemi, and E. Kaviani, “Gold nanoparticles application in liver cancer”, Photodiagnosis Photodyn. Ther. 25, 389–400 (2019).
  12.  N.T.K. Thanh, Magnetic Nanoparticles: From Fabrication to Clinical Applications, CRC Press, Taylor & Francis, Boca Raton, London, New York, 2012.
  13.  S.B. Devarakonda, M.R. Myers, M. Lanier, C Dumoulin, and R.K. Banerjee, “Assessment of gold nanoparticle-mediatedenhanced hyperthermia using mr-guided high-intensity focused ultrasound ablation procedure”, Nano Lett. 17, 2532–2538 (2017).
  14.  S.B. Devarakonda, M.R. Myers, and R.K. Banerjee, “Comparison of Heat transfer enhancement between magnetic and gold nanoparticles during HIFU sonication”, ASME J. Biomech. Eng. 140, 081003, (2018).
  15.  K. Sztandera, M. Gorzkiewicz, and B. Klajnert-Maculewicz, “Gold Nanoparticles in Cancer Treatment”, Mol. Pharm. 16(1), 1–23 (2019).
  16.  S. Sengupta and V.K. Balla, “A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment”, J. Adv. Res. 14, 97–111 (2018).
  17.  P. Das, M. Colombo, and D. Prosperi, “Recent advances in magnetic fluid hyperthermia for cancer therapy”, Colloid Surf. B: Biointerfaces 174, 42–55 (2019).
  18.  N.T.K. Thanh, Clinical Applications of Magnetic Nanoparticle, CRC Press, Taylor & Francis, Boca Raton, London, New York, 2018.
  19.  A. Miaskowski, B. Sawicki, and M. Subramanian, “Singledomain nanoparticle magnetic power losses calibrated with calorimetric measurements”, Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 509–516 (2018).
  20.  A. Józefczak, K. Kaczmarek, T. Hornowski, M. Kubovˇcíková, Z. Rozynek, M. Timko, and A. Skumiel, “Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia”, Appl. Phys. Lett. 108(26), 263701 (2016).
  21.  K. Kaczmarek, T. Hornowski, R. Bielas, D. Zak, M. Timko, and A. Józefczak, “Dependence of ultrasonic and magnetic hyperthermia on the concentration of magnetic nanoparticles”, Acta Phys. Pol. A 133, 716–718, (2018).
  22.  E. Kruglenko E., M. Krajewski, R. Tymkiewicz, J. Litniewski, and B. Gambin, “Magnetic and ultrasonic thermal effects of magnetic nanoparticles in a tissue phantom”, Applications of Electromagnetics in Modern Techniques and Medicine (PTZE), Janow Podlaski, Poland, 2019, pp. 89–92.
  23.  K. Kaczmarek, T. Hornowski, I. Antal, M. Rajnak, M. Timko, and A. Józefczak, “Sono-magnetic heating in tumor phantom”, J. Magn. Magn. Mater. 500, 166396 (2020).
  24.  M. Sadeghi-Goughari, S. Jeon, and H. Kwon, “Analytical and Numerical Model of High Intensity Focused Ultrasound Enhanced with Nanoparticles”, IEEE Trans. Biomed. Eng. (2020).
  25.  M. Sadeghi-Goughari, S. Jeon, and H.J. Kwon, “Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis”, Nanotechnology 31(24), 24510 (2020).
  26.  B. Gambin, E. Kruglenko, R. Tymkiewicz, and J. Litniewski, “Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles”, Med. Phys. 46(10), 4361–4370 (2019).
  27.  T. Drakos, M. Giannakou, G. Menikou, C. Ioannides, and C. Damianou, “An improved method to estimate ultrasonic absorption in agar- based gel phantom using thermocouples and MR thermometry”, Ultrasonics 103, 106089 (2020), doi: 10.1016/j.ultras.2020.106089.
  28.  E. Kruglenko, I. Korczak, J. Litniewski, and B. Gambin, “Ultrasound Thermal Effect Enriched by Adding of Micro and Nano Particles to the Agar-Gel Tissue Mimicking Materials”, 2018 Joint Conference – Acoustics Ustka, Poland, 2018, pp. 1–6.
  29.  T. Kujawska, W. Secomski, E. Kruglenko, K. Krawczyk, and A. Nowicki, “Determination of Tissue Thermal Conductivity by Measuring and Modeling Temperature Rise Induced in Tissue by Pulsed Focused Ultrasound”, Plos One 9, e94929 (2014).
  30.  J. Lyklema, “The bottom size of colloids”, Bull. Pol. Acad. Sci. Tech. Sci. 53(4), 317–323 (2005), doi: 10.24425/123928.
  31.  P.C. Morais, “From magnetic fluids up to complex biocompatible nanosized magnetic systems”, Bull. Pol. Acad. Sci. Tech. Sci. 56(3), 253–262 (2008).
  32.  M. Zhang, Z. Che, J. Chen, H. Zhao, L. Yang, Z. Zhong, and J. Lu, “Experimental Determination of Thermal Conductivity of Water-Agar Gel at Different Concentrations and Temperatures”, J. Chem. Eng. Data 56(4), 859–864 (2011).
  33.  K. Kaczmarek, T. Hornowski, M. Kubovčíková, M. Timko, M. Koralewski, and A. Józefczak, “Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles”, ACS Appl. Mater. Interfaces 10(14), 11554–11564 (2018).
  34.  B. Gambin and E. Kruglenko, “Temperature Measurement by Statistical Parameters of Ultrasound Signal Backscattered from Tissue Samples”, Acta Phys. Pol. 128(3), A72–A7867 (2015).
  35.  P. Karwat, T. Kujawska, P.A. Lewin, W. Secomski, B. Gambin, and J. Litniewski, “Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm2) intensity focused ultrasound beam using phase shift of ultrasound echoes”, Ultrasonics 65, 211–219 (2016).
  36.  S.C. Brüningk, I. Rivens, P. Mouratidis, and G. Ter Haar, “Focused Ultrasound-Mediated Hyperthermia in Vitro: An Experimental Arrangement for Treating Cells under Tissue-Mimicking Conditions”, Ultrasound Med. Biol. 45(12), 3290–3297 (2019).
  37.  H.H. Pennes, “ Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”, J. Appl. Physiol. 1(2), 93–122 (1948).
  38.  COMSOL Multiphysics 4.3b, application ID: 12659, “Focused Ultrasound Induced Heating in Tissue Phantom” [Online]. Available: https://www.comsol.com/model/focused-ultrasoundinduced-heating-in-tissue-phantom-12659.
  39.  C.R. Dillon, U. Vyas, A. Payne, D.A. Christensen, and R.B. Roemer, “An analytical solution for improved HIFU SAR estimatOnly in the Agar sampleion”, Phys. Med. Biol. 57, 4527‒4544 (2012).
  40.  S.A. Sapareto and W.C. Dewey, “Thermal dose determination in cancer therapy”, Int. J. Radiat. Oncol. Biol. Phys. 10, 787–800 (1984).
  41.  B. Gambin, E. Kruglenko, T. Kujawska, and M. Michajłow, “Modeling of tissues in vivo heating induced by exposure to therapeutic ultrasound”, Acta Phys. Pol. A 119, 950–956 (2011).
  42.  H. Morris, I. Rivens, A. Shaw and and G. ter Haar, “Investigation of the viscous heating artifact arising from the use of thermocouples in a focused ultrasound field”, Phys. Med. Biol. 53, 4759–4776 (2008).
  43.  C. Bera, S. Devaraconda, V. Kumar, A. Ganguli, and R. Banerjee, “The mechanism of nanoparticle-mediated enhanced energy transfer during high-intensity focused ultrasound sonication”, Phys. Chem. Chem. Phys. 19(29), 19075–19082 (2017).

Date

12.04.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.137053

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; Early Access; e137053
×