Details
Title
Ultrasonic specific absorption rate in nanoparticle-mediated moderate hyperthermiaJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
3Affiliation
Gambin, Barbara : Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland ; Kruglenko, Eleonora : Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, PolandAuthors
Keywords
ultrasonic hyperthermia ; agar-based tissue mimicking phantom ; magnetic nanoparticles ; temperature ; specific absorption rate (SAR)Divisions of PAS
Nauki TechniczneCoverage
e137053Bibliography
- E. Ben-Hur, B.V. Bronk, and M.M. Elkind, “Thermally enhanced radiosensitivity of cultured Chinese hamster cells”, Nat. New Biol. 238, 209–211 (1972).
- M.W. Dewhirst, E.J. Ozimek, J. Gross, and T.C. Cetas, “Will hyperthermia conquer the elusive hypoxic cell? Implications of heat effects on tumor and normal-tissue microcirculation”, Radiology 137(3), 811–817 (1980).
- B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia”, Crit. Rev. Oncol./Hematol. 43(1), 33–56 (2002).
- Z. Izadifar, P. Babyn, and D. Chapman, “Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge”, Ultrasound Med. Biol. 43(6), 1085–110 (2017).
- A. Mizera and B. Gambin, “Stochastic modeling of the eukaryotic heat shock response”, J. Theor. Biol. 265, 455–466 (2010).
- S.Z. Child, B. Vives, C.W. Fridd, J.D. Hare, C.A. Linke, H.T. Davis, and E.L. Carstensen, “Ultrasonic treatment of tumors— II: Moderate hyperthermia”, Ultrasound Med. Biol. 6(4), 341–344 (1980).
- G. ter Haar, “The Resurgence of Therapeutic Ultrasound – A 21st Century Phenomenon”, Ultrasonics, 48(4), 233 (2008).
- B. Gambin, T. Kujawska, E. Kruglenko, A. Mizera, and A. Nowicki, “Temperature Fields Induced by Low Power Focused Ultrasound in Soft Tissues During Gene Therapy, Numerical Predictions and Experimental Results”, Arch. Acoust. 34(4), 445–459 (2009).
- A. Mizera, and B. Gambin, “Modelling of ultrasound therapeutic heating and numerical study of the dynamics of the induced heat shock response”, Commun. Nonlinear Sci. Numer. Simul. 16(5), 2342–2349 (2011).
- A. Sohail, Z. Ahmad, O.A. Bég, S. Arshad, and L. Sherin, “A review on hyperthermia via nanoparticle-mediated therapy”, Bull. Cancer 104(5), 452–461 (2017).
- S. Taghizadeh V. Alimardani, P.L. Roudbali, Y. Ghasemi, and E. Kaviani, “Gold nanoparticles application in liver cancer”, Photodiagnosis Photodyn. Ther. 25, 389–400 (2019).
- N.T.K. Thanh, Magnetic Nanoparticles: From Fabrication to Clinical Applications, CRC Press, Taylor & Francis, Boca Raton, London, New York, 2012.
- S.B. Devarakonda, M.R. Myers, M. Lanier, C Dumoulin, and R.K. Banerjee, “Assessment of gold nanoparticle-mediatedenhanced hyperthermia using mr-guided high-intensity focused ultrasound ablation procedure”, Nano Lett. 17, 2532–2538 (2017).
- S.B. Devarakonda, M.R. Myers, and R.K. Banerjee, “Comparison of Heat transfer enhancement between magnetic and gold nanoparticles during HIFU sonication”, ASME J. Biomech. Eng. 140, 081003, (2018).
- K. Sztandera, M. Gorzkiewicz, and B. Klajnert-Maculewicz, “Gold Nanoparticles in Cancer Treatment”, Mol. Pharm. 16(1), 1–23 (2019).
- S. Sengupta and V.K. Balla, “A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment”, J. Adv. Res. 14, 97–111 (2018).
- P. Das, M. Colombo, and D. Prosperi, “Recent advances in magnetic fluid hyperthermia for cancer therapy”, Colloid Surf. B: Biointerfaces 174, 42–55 (2019).
- N.T.K. Thanh, Clinical Applications of Magnetic Nanoparticle, CRC Press, Taylor & Francis, Boca Raton, London, New York, 2018.
- A. Miaskowski, B. Sawicki, and M. Subramanian, “Singledomain nanoparticle magnetic power losses calibrated with calorimetric measurements”, Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 509–516 (2018).
- A. Józefczak, K. Kaczmarek, T. Hornowski, M. Kubovˇcíková, Z. Rozynek, M. Timko, and A. Skumiel, “Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia”, Appl. Phys. Lett. 108(26), 263701 (2016).
- K. Kaczmarek, T. Hornowski, R. Bielas, D. Zak, M. Timko, and A. Józefczak, “Dependence of ultrasonic and magnetic hyperthermia on the concentration of magnetic nanoparticles”, Acta Phys. Pol. A 133, 716–718, (2018).
- E. Kruglenko E., M. Krajewski, R. Tymkiewicz, J. Litniewski, and B. Gambin, “Magnetic and ultrasonic thermal effects of magnetic nanoparticles in a tissue phantom”, Applications of Electromagnetics in Modern Techniques and Medicine (PTZE), Janow Podlaski, Poland, 2019, pp. 89–92.
- K. Kaczmarek, T. Hornowski, I. Antal, M. Rajnak, M. Timko, and A. Józefczak, “Sono-magnetic heating in tumor phantom”, J. Magn. Magn. Mater. 500, 166396 (2020).
- M. Sadeghi-Goughari, S. Jeon, and H. Kwon, “Analytical and Numerical Model of High Intensity Focused Ultrasound Enhanced with Nanoparticles”, IEEE Trans. Biomed. Eng. (2020).
- M. Sadeghi-Goughari, S. Jeon, and H.J. Kwon, “Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis”, Nanotechnology 31(24), 24510 (2020).
- B. Gambin, E. Kruglenko, R. Tymkiewicz, and J. Litniewski, “Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles”, Med. Phys. 46(10), 4361–4370 (2019).
- T. Drakos, M. Giannakou, G. Menikou, C. Ioannides, and C. Damianou, “An improved method to estimate ultrasonic absorption in agar- based gel phantom using thermocouples and MR thermometry”, Ultrasonics 103, 106089 (2020), doi: 10.1016/j.ultras.2020.106089.
- E. Kruglenko, I. Korczak, J. Litniewski, and B. Gambin, “Ultrasound Thermal Effect Enriched by Adding of Micro and Nano Particles to the Agar-Gel Tissue Mimicking Materials”, 2018 Joint Conference – Acoustics Ustka, Poland, 2018, pp. 1–6.
- T. Kujawska, W. Secomski, E. Kruglenko, K. Krawczyk, and A. Nowicki, “Determination of Tissue Thermal Conductivity by Measuring and Modeling Temperature Rise Induced in Tissue by Pulsed Focused Ultrasound”, Plos One 9, e94929 (2014).
- J. Lyklema, “The bottom size of colloids”, Bull. Pol. Acad. Sci. Tech. Sci. 53(4), 317–323 (2005), doi: 10.24425/123928.
- P.C. Morais, “From magnetic fluids up to complex biocompatible nanosized magnetic systems”, Bull. Pol. Acad. Sci. Tech. Sci. 56(3), 253–262 (2008).
- M. Zhang, Z. Che, J. Chen, H. Zhao, L. Yang, Z. Zhong, and J. Lu, “Experimental Determination of Thermal Conductivity of Water-Agar Gel at Different Concentrations and Temperatures”, J. Chem. Eng. Data 56(4), 859–864 (2011).
- K. Kaczmarek, T. Hornowski, M. Kubovčíková, M. Timko, M. Koralewski, and A. Józefczak, “Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles”, ACS Appl. Mater. Interfaces 10(14), 11554–11564 (2018).
- B. Gambin and E. Kruglenko, “Temperature Measurement by Statistical Parameters of Ultrasound Signal Backscattered from Tissue Samples”, Acta Phys. Pol. 128(3), A72–A7867 (2015).
- P. Karwat, T. Kujawska, P.A. Lewin, W. Secomski, B. Gambin, and J. Litniewski, “Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm2) intensity focused ultrasound beam using phase shift of ultrasound echoes”, Ultrasonics 65, 211–219 (2016).
- S.C. Brüningk, I. Rivens, P. Mouratidis, and G. Ter Haar, “Focused Ultrasound-Mediated Hyperthermia in Vitro: An Experimental Arrangement for Treating Cells under Tissue-Mimicking Conditions”, Ultrasound Med. Biol. 45(12), 3290–3297 (2019).
- H.H. Pennes, “ Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”, J. Appl. Physiol. 1(2), 93–122 (1948).
- COMSOL Multiphysics 4.3b, application ID: 12659, “Focused Ultrasound Induced Heating in Tissue Phantom” [Online]. Available: https://www.comsol.com/model/focused-ultrasoundinduced-heating-in-tissue-phantom-12659.
- C.R. Dillon, U. Vyas, A. Payne, D.A. Christensen, and R.B. Roemer, “An analytical solution for improved HIFU SAR estimatOnly in the Agar sampleion”, Phys. Med. Biol. 57, 4527‒4544 (2012).
- S.A. Sapareto and W.C. Dewey, “Thermal dose determination in cancer therapy”, Int. J. Radiat. Oncol. Biol. Phys. 10, 787–800 (1984).
- B. Gambin, E. Kruglenko, T. Kujawska, and M. Michajłow, “Modeling of tissues in vivo heating induced by exposure to therapeutic ultrasound”, Acta Phys. Pol. A 119, 950–956 (2011).
- H. Morris, I. Rivens, A. Shaw and and G. ter Haar, “Investigation of the viscous heating artifact arising from the use of thermocouples in a focused ultrasound field”, Phys. Med. Biol. 53, 4759–4776 (2008).
- C. Bera, S. Devaraconda, V. Kumar, A. Ganguli, and R. Banerjee, “The mechanism of nanoparticle-mediated enhanced energy transfer during high-intensity focused ultrasound sonication”, Phys. Chem. Chem. Phys. 19(29), 19075–19082 (2017).