Details
Title
Analysis of the precipitation process of secondary phases after long-term ageing of the S304H steelJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
5Affiliation
Zieliński, Adam : Łukasiewicz Research Network – Institute for Ferrous Metallurgy, ul. K. Miarki 12-14, 44-100 Gliwice, Poland ; Wersta, Robert : Office of Technical Inspection, Regional Branch Office based in Wrocław, ul. Grabiszyńska 51, 53-503 Wrocław, Poland ; Sroka, Marek : Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44 100 Gliwice, PolandAuthors
Keywords
S304H steel ; microstructure ; precipitates ; ageing ; loss of durabilityDivisions of PAS
Nauki TechniczneCoverage
e137520Bibliography
- “Poland’s Energy Policy PEP2040”, [Online]. Available: https://www.gov.pl/web/klimat/polityka-energetyczna-polski, [Accessed: 1. Mar. 2021].
- M. Bartecka, P. Terlikowski, M. Kłos, and Ł. Michalski, “Sizing of prosumer hybrid renewable energy systems in Poland,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 721‒731, 2020, doi: 10.24425/bpasts.2020.133125.
- G. Golański, A. Zieliński, and A. Zielińska-Lipiec, “Degradation of microstructure and mechanical properties in martensitic cast steel after ageing,” Materialwiss. Werkst., vol. 46, no. 3, pp. 248–255, 2015, doi: 10.1002/mawe.201400325.
- J. Horváth, J. Janovec, and M. Junek, “The Changes in Mechanical Properties of Austenitic Creep Resistant Steels SUPER 304H and HR3C Caused by Medium-Term Isothermal Ageing,” Sol. St. Phen., vol. 258, pp. 639‒642, 2017, doi: 10.4028/www.scientific.net/ssp.258.639.
- A. Zieliński, G. Golański, and M. Sroka, “Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750°C,” Mat. Sci. Eng. A-Struct., vol. 796, p. 139944, 2020, doi: 10.1016/j.msea.2020.139944.
- G. Golański, A. Zieliński, M. Sroka, and J. Słania, “The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat- Resistant Austenitic Stainless Steel,” Materials, vol. 13, no. 6, p. 1297, 2020, doi: 10.3390%2Fma13061297.
- A.F. Padilha and P.R. Rios, “Decomposition of Austenite in Austenitic Stainless Steels,” ISIJ Intern., vol. 42, no. 4, pp. 325–327, 2002, doi: 10.2355/isijinternational.42.325.
- R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, and A.F. Padilha, “A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance,” Mater. Res., vol. 10, no. 4, pp. 453–460, 2007, doi: 10.1590/ s1516-14392007000400021.
- X. Xie, Y. Wu, C. Chi, and M. Zhang, “Superalloys for Advanced Ultra-Super-Critical Fossil Power Plant Application,” Superalloys, 2015, doi: 10.5772/61139.
- A. Zieliński, G. Golański, M. Kierat, M. Sroka, A. Merda, and K. Sówka, “Microstructure of HR6W Alloy at Elevated Temperature after Prolonged Ageing in Air Atmosphere,” Acta Phys. Pol. A, vol. 138, no. 2, pp. 253–256, 2020, doi: 10.12693/aphyspola.138.253.
- M. Sroka, A. Zieliński, A. Śliwa, M. Nabiałek, Z. Kania-Pifczyk, and I. Vasková, “The Effect of Long-Term Ageing on the Degradation of the Microstructure the Inconel 740h Alloy,” Acta Phys. Pol. A, vol. 137, no. 3, pp. 355–360, 2020, doi: 10.12693/aphyspola.137.355.
- A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, no. 11, p. 2130, 2018, doi:10.3390/ma11112130.
- A. Zieliński, J. Dobrzański, H. Purzyńska, R. Sikora, M. Dziuba-Kałuża, and Z. Kania, “Evaluation of Creep Strength of Heterogeneous Welded Joint in HR6W Alloy and Sanicro 25 Steel,” Arch. Metall. Mater. vol. 62, no. 4, pp. 2057–2064, 2017, doi: 10.1515/amm-2017- 0305.
- M. Sroka, A. Zieliński, A. Hernas, Z. Kania, R. Rozmus, T. Tański, and A. Śliwa, “The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy,” Metalurgija, vol. 56, no. 3‒4, pp. 333‒336, 2017.
- M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The Influence of the Temperature and Ageing Time on the NiCr23Co12Mo Alloy Microstructure,” Rev. Chim-Bucharest., vol. 68, no. 4, pp. 737–741, 2017, doi: 10.37358/rc.17.4.5541.
- T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 913‒921, doi: 10.24425/bpasts.2020.134184.
- A. Zieliński, M. Miczka, and M. Sroka, “The effect of temperature on the changes of precipitates in low-alloy steel,” Mater. Sci. Tech- Lond., vol. 32, no. 18, pp. 1899‒1910, 2016, doi: 10.1080/02670836.2016.1150242.
- T. Tokairin et al., “Investigation on long-term creep rupture properties and microstructure stability of Fe–Ni based alloy Ni–23Cr–7W at 700°C,” Mat. Sci. Eng. A-Struct., vol. 565, pp. 285–291, 2013, doi: 10.1016/j.msea.2012.12.019.
- G. Golański, C. Kolan, A. Zieliński, and P. Urbańczyk, Degradation process of heat–resistant austenitic stainless steel, Energetics, vol. 11, pp. 727‒730, 2017 [in polish].
- M. Igarashi, Alloy design philosophy of creep – resistant steels In: Abe F., Kern T.U., Viswanathan R. (ED.), Creep resistant steels. Cambridge: Woodhead Publishing, 2008.
- C. Chi, H. Yu, J. Dong, W. Liu, S. Cheng, Z. Liu, and X. Xie, “The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application,” Prog. Nat. Sci., vol. 22, no. 3, pp. 175–185, 2012., doi: 10.1016/j.pnsc.2012.05.002.
- H. Yu and Ch. Chi, “Precipitation behaviour of Cu-rich phase in 18Cr9Ni3CuNbN austenitic heat – resistant steel at early aging state”, Chin. J. Mater. Res., vol. 29, pp. 195‒200, 2015.