Details

Title

Selection of a numerical model to predict the flowin a fan with a cycloidal rotor

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 4

Affiliation

Staśko, Tomasz : Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland ; Majkut, Mirosław : Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland ; Dykas, Sławomir : Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland ; Smołka, Krystian : Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland

Authors

Keywords

Fan ; CFD ; Cyclorotor

Divisions of PAS

Nauki Techniczne

Coverage

3-15

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Morandini M., Xisto C., Pascoa J., Quaranta G., Gagnon L., Masarati P.: Aeroelastic analysis of a cycloidal rotor under various operating conditions. J. Aircraft. 55(2018), 4, 1675–1688.
[2] Muscarello V., Masarati P., Quaranta G., Georges T., Gomand J., Malburet F., Marilena P.: Instability mechanism of roll/lateral biodynamic rotorcraft–pilot couplings. J. Am. Helicopter Soc. 63(2018), 1–13.
[3] Xisto C. Leger J., Pascoa J., Gagnon L., Masarati P., Angeli D., Dumas A.: Parametric analysis of a large-scale cycloidal rotor in hovering conditions. J. Aerospace Eng. 30(2017), 1.
[4] Xisto C., Pascoa J., Abdollahzadeh M., Leger J., Masarati P., Gagnon L., Schwaiger M., Wills D.: PECyT – plasma enhanced cycloidal thruster. In: Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. July 28–30, 2014, Cleveland.
[5] Andrisani A., Angeli D., Dumas A.: Optimal pitching schedules for a cycloidal rotor in hovering. Aircr. Eng. Aerosp. Tec. 88(2016), 5.
[6] Xisto C., Pascoa J., Leger J.: Cycloidal rotor propulsion system with plasma enhanced aerodynamics. In: Proc. ASME 2014 Int.l Mechanical Engineering Congress and Exposition; Montreal, Nov. 14–20, 2014; V001T01A005.
[7] Xisto C., Pascoa J., Trancossi M.: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high solidity VAWT. J. Sol. Energy Eng. 138(2016), 031006.
[8] Benedict M.: Fundamental understanding of cycloidal-rotor concept for micro air vehicle applications. PhD thesis, Univ. Maryland, College Park, 2010.
[9] Benedict M., Ramasamy M., Chopra I.: Improving the aerodynamic performance of micro-air-vehicle-scale cycloidal rotor: An experimental approach. J. Aircraft 47(20104), 1117–1125.
[10] Heimerl J., Halder A., Benedict M.: Experimental and computational investigation of a UAV-scale cycloidal rotor in forward flight. In: Proc. The Vertical Flight Society’s 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10–14, 2021.
[11] Halder A., Benedict M.: Nonlinear aeroelastic coupled trim analysis of a twin cyclocopter in forward flight. AIAA J., 59, 2021, 305–319.
[12] Lee B., Saj V., Benedict M., Kalathil D.: A Vision-Based Control Method for Autonomous Landing Of Vertical Flight Aircraft On A Moving Platform Without Using GPS. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[13] Denton H., Benedict M., Kang H., Hrishikeshavan V.: Design, development and flight testing of a gun-launched rotary-wing micro air vehicle. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[14] Halder A., Benedict M.: Understanding upward scalability of cycloidal rotors for large-scale UAS applications. In: Proc. Aeromechanics for Advanced Vertical Flight Technical Meeting 2020, Transformative Vertical Flight 2020, San Jose, 21–23 Jan. 2020, 311–330.
[15] Runco C., Benedict M.: Flight dynamics model identification of a meso-scale twin-cyclocopter in hover. Paper presented at the 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10-14, 2021.
[16] Runco C., Coleman D., Benedict M.: Design and development of a 30 g cyclocopter. J. Am. Helicopter Soc. 64(2019), 1.
[17] Coleman D., Halder A., Saemi F., Runco C., Denton H., Lee B., Benedict M.: Development of “Aria”, a compact, ultra-quiet personal electric helicopter. In: Proc. 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight, Virtual, May 10–14, 2021.
[18] Koschorrek P., Siebert Ch., Haghani A., Jeinsch T.: Dynamic positioning with active roll reduction using Voith Schneider propeller. IFAC-PapersOnLine, 48(2015), 16, 178–183.
[19] Schubert A., Koschorrek P., Kurowski M., Lampe B., Jeinsch T.: Roll damping using Voith Schneider propeller a repetitive control approach. IFACPapersOnLine 49(2016), 23, 557–561.
[20] Hahn T., Koschorrek P., Jeinsch T.: Parameter estimation of wave-induced oscillatory ship motion for wave filtering in dynamic positioning. IFAC-PapersOnLine 51(2018), 29, 183–188.
[21] Hashem I., Mohamed M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142(2018), 531–545
[22] Siegel S.: Numerical benchmarking study of a cycloidal wave energy converter. Renew. Energ. 134(2019), 390–405.
[23] Siegel S.: Wave radiation of a cycloidal wave energy converter. Appl. Ocean Res. 49(2015), 9–19.
[24] Bianchini A., Balduzzi F., Rainbird J., Peiro J., Graham M., Ferrara G.: An experimental and numerical assessment of airfoil polars for use in Darrieus wind turbines – Part I: Flow curvature effects. J. Eng. Gas Turb. Power 138(2016), 032602-1.
[25] Dykas S., Majkut M., Smołka K., Strozik M., Chmielniak T., Stasko T.: Numerical and experimental investigation of the fan with cycloidal rotor. Mech. Mechanical Eng. 22(2018), 2, 447–454.
[26] Stasko T., Dykas S., Majkut M., Smołka K.: An attempt to evaluate the cycloidal rotor fan performance, Open J. Fluid Dyn. 9(2019), 292–30.
[27] Shyy W., Lian Y., Tang J., Viieru D., Liu H.: Aerodynamics of Low Reynolds Flyers. Cambridge Univ. Press, 2008.
[28] Ansys Fluent User Guide 2020 R1. Ansys, Canonsburg 2020.
[29] Shrestha E., Yeo D., Benedict M., Chopra I.: Development of a meso-scale cycloidal-rotor aircraft for micro air vehicle application. Int. J. Micro Air Veh. 9(2017), 3.
[30] Augusto J., Monteiro L., Pascoa J., Xisto C.: Aerodynamic optimization of cyclorotors. Aircraft Eng. Aerosp. Tec. 88(2016), 2.

Date

2022.01.17

Type

Article

Identifier

DOI: 10.24425/ather.2021.137560

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×