Details

Title

Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model

Journal title

Metrology and Measurement Systems

Yearbook

2021

Volume

vol. 28

Issue

No 4

Affiliation

Duda, Krzysztof : AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Measurement and Electronics, al. Mickiewicza 30, 30-059 Kraków, Poland ; Zieliński, Tomasz P. : AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Institute of Telecommunications, al. Mickiewicza 30, 30-059 Kraków, Poland

Authors

Keywords

frequency estimation ; linear prediction ; Prony method ; smart DFT

Divisions of PAS

Nauki Techniczne

Coverage

661-672

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Bibliography

[1] Kay, S. M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall
[2] Kay, S. M., & Marple, S. L. (1981). Spectrum analysis – A modern perspective. Proc. IEEE, 69, 1380–1419. https://doi.org/10.1109/PROC.1981.12184
[3] Kay, S. M. (1987). Modern Spectrum Analysis. Prentice-Hall.
[4] Zielinski, T. P., & Duda, K. (2011). Frequency and damping estimation methods - an overview. Metrology and Measurement Systems, 18(3), 505–528. https://doi.org/10.2478/v10178-011-0051-y
[5] Duda, K., & Zielinski, T. P. (2013). Efficacy of the frequency and damping estimation of a real-value sinusoid. IEEE Instrumentation & Measurement Magazine, 16(1), 48–58. https://doi.org/10.1109/ MIM.2013.6495682
[6] Borkowski, J., Kania, D., & Mroczka, J. (2018). Comparison of sine-wave frequency estimation methods in respect of speed and accuracy for a few observed cycles distorted by noise and harmonics. Metrology and Measurement Systems, 25(1), 283–302. https://doi.org/10.24425/119567
[7] Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83. https://doi.org/10.1109/PROC.1978.10837
[8] Zygarlicki, J., Zygarlicka, M., Mroczka, J., & Latawiec, K. J. (2010). A reduced Prony’s method in power-quality analysis – parameters selection. IEEE Transactions on Power Delivery, 25(1), 979–986. https://doi.org/10.1109/TPWRD.2009.2034745
[9] Zygarlicki, J., & Mroczka, J. (2014). Prony’s method with reduced sampling – numerical aspects. Metrology and Measurement Systems, 21(2), 521–534. https://doi.org/10.2478/mms-2014-0044
[10] Zygarlicki, J. (2017). Fast second order original Prony’s method for embedded measuring systems. Metrology and Measurement Systems, 24(3), 721–728. https://doi.org/10.1515/mms-2017-0058
[11] Hua, Y., & Sarkar, T. K., (1990). Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoid in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(4), 814–824. https://doi.org/10.1109/29.56027
[12] Steiglitz, K.,&McBride, L. (1965). A technique for identification of linear systems. IEEE Transactions on Automatic Control, 10(3), 461–464. https://doi.org/10.1109/TAC.1965.1098181
[13] McClellan, J. H., & Lee, D. (1991). Exact equivalence of the Steiglitz–McBride iteration and IQML. IEEE Transactions on Signal Processing, 39(1), 509–512. https://doi.org/10.1109/78.80841
[14] Wu, R. C., & Chiang, C. T. (2010). Analysis of the exponential signal by the interpolated DFT algorithm. IEEE Transactions on Instrumentation and Measurement, 59(12), 3306–3317. https://doi.org/10.1109/TIM.2010.2047301
[15] Derviškadic, A., Romano, & P., Paolone, M. (2018). Iterative-Interpolated DFT for Synchrophasor Estimation: A Single Algorithm for P- and M-Class Compliant PMUs. IEEE Transactions on Instrumentation and Measurement, 67(2), 547–558. https://doi.org/10.1109/TIM.2017.2779378
[16] Jacobsen, E., & Kootsookos, P. (2007). Fast, accurate frequency estimators. IEEE Signal Processing Magazine, 24(2), 123–125. https://doi.org/10.1109/MSP.2007.361611
[17] Duda, K., & Barczentewicz, S. (2014). Interpolated DFT for sin α (x) windows. IEEE Transactions on Instrumentation and Measurement, 63(3), 754–760. https://doi.org/10.1109/TIM.2013.2285795
[18] Yang, J. Z., & Liu, C. W. (2000). A precise calculation of power system frequency and phasor. IEEE Transactions on Power Delivery, 15(1), 494–499. https://doi.org/10.1109/61.852974
[19] Yang, J. Z., & Liu, C. W. (2001). A precise calculation of power system frequency. IEEE Transactions on Power Delivery, 16(2), 361–366. https://doi.org/10.1109/61.924811
[20] Xia, Y., He, Y., Wang, K., Pei, W., Blazic, Z., & Mandic, D. P. (2017). A complex least squares enhanced smart DFT technique for power system frequency estimation. IEEE Transactions on Power Delivery, 32(2), 1270–1278. https://doi.org/10.1109/TPWRD.2015.2418778
[21] Li, Z. (2021). A total least squares enhanced smart DFT technique for frequency estimation of unbalanced three-phase power systems. International Journal of Electrical Power & Energy Systems, 128, 106722. https://doi.org/10.1016/j.ijepes.2020.106722
[22] Xu, S., Liu, H., & Bi, T. (2020). A novel frequency estimation method based on complex Bandpass filters for P-class PMUs with short reporting latency. IEEE Transactions on Power Delivery. https://doi.org/10.1109/TPWRD.2020.3038703
[23] Duda, K., & Zielinski, T. P. (2021). P Class and M Class Compliant PMU Based on Discrete- Time Frequency-Gain Transducer. IEEE Transactions on Power Delivery. https://doi.org/10.1109/TPWRD.2021.3076831
[24] IEC, IEEE. (2018). Measuring relays and protection equipment – Part 118–1: Synchrophasor for power systems – Measurements (IEC/IEEE Standard No. 60255-118-1).
[25] Moon, T. K., & Stirling W. C. (1999). Mathematical Methods and Algorithms for Signal Processing. Prentice Hall.

Date

2021.12.22

Type

Article

Identifier

DOI: 10.24425/mms.2021.137701
×