Details
Title
Sensitivity analysis of a new approach to photovoltaic parameters extraction based on the total least squares methodJournal title
Metrology and Measurement SystemsYearbook
2021Volume
vol. 28Issue
No 4Affiliation
Mesbahi, Oumaima : University of Évora, Department of Mechatronics, R. Romão Ramalho 59, 7000-671 Évora, Portugal ; Mesbahi, Oumaima : Instrumentation and Control Laboratory, Institute of Earth Sciences, Évora, Portugal ; Tlemçani, Mouhaydine : University of Évora, Department of Mechatronics, R. Romão Ramalho 59, 7000-671 Évora, Portugal ; Tlemçani, Mouhaydine : Instrumentation and Control Laboratory, Institute of Earth Sciences, Évora, Portugal ; Janeiro, Fernando M. : University of Évora, Department of Mechatronics, R. Romão Ramalho 59, 7000-671 Évora, Portugal ; Janeiro, Fernando M. : Instrumentation and Control Laboratory, Institute of Earth Sciences, Évora, Portugal ; Janeiro, Fernando M. : Instituto de Telecomunicações, Lisbon, Portugal ; Hajjaji, Abdeloawahed : University of Chouaib Doukkali, Energy Engineering Laboratory, National School of Applied Sciences, El Jadida, Morocco ; Kandoussi, Khalid : University of Chouaib Doukkali, Energy Engineering Laboratory, National School of Applied Sciences, El Jadida, MoroccoAuthors
Keywords
photovoltaic modules ; parameter extraction ; total least squares ; MPP ; sensitivity analysisDivisions of PAS
Nauki TechniczneCoverage
751-765Publisher
Polish Academy of Sciences Committee on Metrology and Scientific InstrumentationBibliography
[1] Blaabjerg, F., & Ionel, D. M. (2015). Renewable Energy Devices and Systems – State-of-the-Art Technology, Research and Development, Challenges and Future Trends. Electric Power Components and Systems, 43(12), 1319–1328. https://doi.org/10.1080/15325008.2015.1062819[2] Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change – A review. Energy Policy, 52, 797–809. https://doi.org/10.1016/j.enpol.2012.10.046
[3] Gangopadhyay, U., Jana, S., & Das, S. (2013). State of Art of Solar Photovoltaic Technology. Conference Papers in Energy, 2013, 1–9. https://doi.org/10.1155/2013/764132
[4] Mao, M., Cui, L., Zhang, Q., Guo, K., Zhou, L.,&Huang, H. (2020). Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Reports, 6, 1312–1327.
[5] Ahmed, M. T., Rashel, M. R., Faisal, F.,&Tlemçani, M. (2020). Non-iterative MPPT Method:AComparative Study. International Journal of Renewable Energy Research (IJRER), 10(2), 549–557.
[6] Azmi, F. F. A., Sahraoui, B., & Muzakir, S. K. (2019). Study of ZnO nanospheres fabricated via thermal evaporation for solar cell application. Makara Journal of Technology, 23(1), 11–15.
[7] Boyd, M. T., Klein, S. A., Reindl, D. T., & Dougherty, B. P. (2011). Evaluation and validation of equivalent circuit photovoltaic solar cell performance models. Journal of Solar Energy Engineering, 133(2). https://doi.org/10.1115/1.4003584
[8] Bader, S., Ma, X., & Oelmann, B. (2020). A Comparison of One- and Two-Diode Model Parameters at Indoor Illumination Levels. IEEE Access, 8, 172057–172064. https://doi.org/10.1016/10.1109/ACCESS.2020.3025146
[9] Ciani, L., Catelani, M., Carnevale, E. A., Donati, L., & Bruzzi, M. (2015). Evaluation of the Aging Process of Dye-Sensitized Solar Cells Under Different Stress Conditions. IEEE Transactions on Instrumentation and Measurement, 64(5), 1179–1187. https://doi.org/10.1109/TIM.2014.2381352
[10] Ndiaye, A., Charki, A., Kobi, A., Kébé, C. M. F., Ndiaye, P. A., & Sambou, V. (2013). Degradations of silicon photovoltaic modules: A literature review. Solar Energy, 96, 140–151. https://doi.org/10.1016/10.1016/j.solener.2013.07.005
[11] Lay-Ekuakille, A., Ciaccioli, A., Griffo, G., Visconti, P., & Andria, G. (2018). Effects of dust on photovoltaic measurements: A comparative study. Measurement, 113, 181–188. http://dx.doi.org/10.1016/10.1016/j.measurement.2017.06.025
[12] Cristaldi, L., Faifer, M., Rossi, M., Toscani, S., Catelani, M., Ciani, L., & Lazzaroni, M. (2014). Simplified method for evaluating the effects of dust and aging on photovoltaic panels. Measurement, 54, 207–214. https://doi.org/10.1016/j.measurement.2014.03.001
[13] Carullo, A., Ferraris, F., Vallan, A., Spertino, F., & Attivissimo, F. (2014). Uncertainty analysis of degradation parameters estimated in long-term monitoring of photovoltaic plants. Measurement, 55, 641–649. https://doi.org/10.1016/j.measurement.2014.06.003
[14] Cubas, J., Pindado, S., & Victoria, M. (2014). On the analytical approach for modeling photovoltaic systems behavior. Journal of Power Sources, 247, 467–474. https://doi.org/10.1016/j.jpowsour.2013.09.008
[15] Batzelis, E. I., & Papathanassiou, S. A. (2016). A Method for the Analytical Extraction of the Single-Diode PV Model Parameters. IEEE Transactions on Sustainable Energy, 7(2), 504–512. https://doi.org/10.1109/TSTE.2015.2503435
[16] Hassan Ali, M., Rabhi, A., Haddad, S., & El Hajjaji, A. (2017). Real-Time Determination of Solar Cell Parameters. Journal of Electronic Materials, 46(11), 6535–6543. https://doi.org/10.1016/10.1007/s11664-017-5697-0
[17] Subudhi, B., & Pradhan, R. (2018). Bacterial Foraging Optimization Approach to Parameter Extraction of a Photovoltaic Module. IEEE Transactions on Sustainable Energy, 9(1), 381–389. https://doi.org/10.1109/TSTE.2017.2736060
[18] Long, W., Cai, S., Jiao, J., Xu, M., & Wu, T. (2020). A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management, 203, 112243. https://doi.org/10.1016/j.enconman.2019.112243
[19] Liao, Z., Chen, Z., & Li, S. (2020). Parameters Extraction of Photovoltaic Models Using Triple- Phase Teaching-Learning-Based Optimization. IEEE Access, 8, 69937–69952. https://doi.org/10.1016/10.1109/ACCESS.2020.2984728
[20] Ibrahim, I. A., Hossain, M. J., Duck, B. C., & Fell, C. J. (2020). An AdaptiveWind-Driven Optimization Algorithm for Extracting the Parameters of a Single-Diode PV Cell Model. IEEE Transactions on Sustainable Energy, 11(2), 1054–1066. https://doi.org/10.1109/TSTE.2019.2917513
[21] Gomes, R. C. M., Vitorino, M. A., Corrêa, M. B. de R., Fernandes, D. A.,&Wang, R. (2017). Shuffled Complex Evolution on Photovoltaic Parameter Extraction:AComparative Analysis. IEEE Transactions on Sustainable Energy, 8(2), 805–815. https://doi.org/10.1109/TSTE.2016.2620941
[22] Dkhichi, F., Oukarfi, B., Fakkar, A., & Belbounaguia, N. (2014). Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing. Solar Energy, 110, 781–788. https://doi.org/10.1016/j.solener.2014.09.033
[23] Alam, D. F., Yousri, D. A., & Eteiba, M. B. (2015). Flower Pollination Algorithm based solar PV parameter estimation. Energy Conversion and Management, 101, 410–422. https://doi.org/10.1016/j.enconman.2015.05.074
[24] Diab, A. A. Z., Sultan, H. M., Do, T. D., Kamel, O. M., & Mossa, M. A. (2020). Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules. IEEE Access, 8, 111102–111140. https://doi.org/10.1109/ACCESS.2020.3000770
[25] Mesbahi, O., Tlemçani, M., Janeiro, F. M., Hajjaji, A., & Kandoussi, K. (2020). A Modified Nelder– Mead Algorithm for Photovoltaic Parameters Identification. International Journal of Smart Grid – IJSmartGrid, 4(1), 28–37.
[26] Mesbahi, O., Tlemçani, M., Janeiro, F. M., Abdeloawahed, H., & Khalid, K. (2019). Estimation of Photovoltaic Panel Parameters by a Numerical Heuristic Searching Algorithm. In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 401-406). IEEE. https://doi.org/10.1109/ICRERA47325.2019.8996779
[27] Hutcheson, G. D. (2011). Ordinary least-squares regression. L. Moutinho and G.D. Hutcheson, The SAGE Dictionary of Quantitative Management Research, 224–228.
[28] Hadjdida, A., Bourahla, M., Ertan, H. B., & Bekhti, M. (2018). Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency. International Journal of Renewable Energy Research, 8(4), 1824–1832.
[29] Salmi, T., Bouzguenda, M., Gastli, A.,&Masmoudi, A. (2012).MATLAB / Simulink Based Modelling of Solar Photovoltaic Cell. International Journal of Renewable Energy Research (IJRER), 2(2), 213– 218.
[30] Dimova-Malinovska, D. (2010). The state-of-the-art and future development of the photovoltaic technologies – The route from crystalline to nanostructured and new emerging materials. Journal of Physics: Conference Series, 253(1). https://doi.org/10.1088/1742-6596/253/1/012007
[31] Mahmoud, Y., Xiao, W., & Zeineldin, H. H. (2012). A Simple Approach to Modeling and Simulation of Photovoltaic Modules. IEEE Transactions on Sustainable Energy, 3(1), 185–186. https://doi.org/10.1109/TSTE.2011.2170776
[32] Ishaque, K., Salam, Z., & Taheri, H. (2011). Simple, fast and accurate two-diode model for photovoltaic modules. Solar Energy Materials and Solar Cells, 95(2), 586–594. https://doi.org/10.1016/j.solmat.2010.09.023
[33] Babu, B. C., & Gurjar, S. (2014). A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module. IEEE Journal of Photovoltaics, 4(4), 1156–1161. https://doi.org/10.1109/JPHOTOV.2014.2316371
[34] Nelder, J. A.,&Mead, R. (1965).Asimplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
[35] Rashel, M. R., Rifat, J., Gonçalves, T., Tlemcani, M., & Melicio, R. (2017). Sensitivity Analysis Through Error Function of Crystalline-Si Photovoltaic Cell Model Integrated in a Smart Grid. International Journal of Renewable Energy Research, 7(4).