Details
Title
TiAl-based Ohmic Contacts to p-type 4H-SiCJournal title
International Journal of Electronics and TelecommunicationsYearbook
2021Volume
vol. 67Issue
No 3Affiliation
Martychowiec, Agnieszka : Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland ; Kwietniewski, Norbert : Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland ; Kondracka, Kinga : Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland ; Werbowy, Aleksander : Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland ; Sochacki, Mariusz : Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, PolandAuthors
Keywords
ohmic contact ; SiC ; silicon carbide ; TiAlDivisions of PAS
Nauki TechniczneCoverage
459-463Publisher
Polish Academy of Sciences Committee of Electronics and TelecommunicationsBibliography
[1] T. Ohshima, S. Onoda, N. Iwamoto, T. Makino, M. Arai, and Y. Tanak, “Radiation Response of Silicon Carbide Diodes and Transistors,” in Physics and Technology of Silicon Carbide Devices, 2012. DOI: 10.5772/51371.[2] Y. Zhang, T. Guo, X. Tang, J. Yang, Y. He, and Y. Zhang, “Thermal stability study of n-type and p-type ohmic contacts simultaneously formed on 4H-SiC,” J. Alloys Compd., vol. 731, pp. 1267–1274, 2018. DOI: 10.1016/j.jallcom.2017.10.086.
[3] Y. Huang, J. Buettner, B. Lechner, and G. Wachutka, “The impact of non-ideal ohmic contacts on the performance of high-voltage SIC MPS diodes,” Mater. Sci. Forum, vol. 963 MSF, pp. 553–557, 2019. DOI: 10.4028/www.scientific.net/MSF.963.553.
[4] F. Roccaforte et al., “Ti/Al-based contacts to p-type SiC and GaN for power device applications,” Phys. Status Solidi Appl. Mater. Sci., vol. 214, no. 4, 2017. DOI: 10.1002/pssa.201600357.
[5] M. Rambach, A. J. Bauer, and H. Ryssel, “Electrical and topographical characterization of aluminum implanted layers in 4H silicon carbide,” Phys. Status Solidi Basic Res., vol. 245, no. 7, pp. 1315–1326, 2008. DOI: 10.1002/pssb.200743510.
[6] F. Roccaforte, F. Giannazzo, and V. Raineri, “Nanoscale transport properties at silicon carbide interfaces,” J. Phys. D. Appl. Phys., vol. 43, no. 22, 2010. DOI: 10.1088/0022-3727/43/22/223001.
[7] T. Abi-Tannous et al., “A Study on the Temperature of Ohmic Contact to p-Type SiC Based on Ti3SiC2 Phase,” IEEE Trans. Electron Devices, vol. 63, no. 6, pp. 2462–2468, 2016. DOI: 10.1109/TED.2016.2556725.
[8] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. New Jersey: John Wiley & Sons, Inc., Hoboken, 2006.
[9] K. Buchholt et al., “Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4H-silicon carbide,” Appl. Phys. Lett., vol. 98, no. 4, pp. 2–5, 2011. DOI: 10.1063/1.3549198.
[10] T. Abi-Tannous et al., “Thermally stable ohmic contact to p-type 4H-SiC based on Ti3SiC2 phase,” Mater. Sci. Forum, vol. 858, pp. 553–556, 2016. DOI: 10.4028/www.scientific.net/MSF.858.553.
[11] F. Roccaforte et al., “Metal/semiconductor contacts to silicon carbide: Physics and technology,” Mater. Sci. Forum, vol. 924 MSF, pp. 339–344, 2018. DOI: 10.4028/www.scientific.net/MSF.924.339.
[12] G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid State Electron., vol. 25, no. 2, pp. 91–94, 1982. DOI: 10.1016/0038-1101(82)90036-3.
[13] G. K. Reeves, “Specific contact resistance using a circular transmission line model,” Solid State Electron., vol. 23, no. 5, pp. 487–490, 1980. DOI: 10.1016/0038-1101(80)90086-6.
[14] Z. Wang, W. Liu, and C. Wang, “Recent Progress in Ohmic Contacts to Silicon Carbide for High-Temperature Applications,” J. Electron. Mater., vol. 45, no. 1, pp. 267–284, 2016. DOI: 10.1007/s11664-015-4107-8.
[15] M. Vivona, G. Greco, C. Bongiorno, R. Lo Nigro, S. Scalese, and F. Roccaforte, “Electrical and structural properties of surfaces and interfaces in Ti/Al/Ni Ohmic contacts to p-type implanted 4H-SiC,” Appl. Surf. Sci., vol. 420, pp. 331–335, 2017. DOI: 10.1016/j.apsusc.2017.05.065.
[16] S. Rao, G. Pangallo, and F. G. Della Corte, “Highly Linear Temperature Sensor Based on 4H-Silicon Carbide p-i-n Diodes,” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1205–1208, 2015. DOI: 10.1109/LED.2015.2481721.
[17] L. Lanni, B. G. Malm, M. Ostling, and C. M. Zetterling, “500°C bipolar integrated OR/NOR Gate in 4H-SiC,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1091–1093, 2013. DOI: 10.1109/LED.2013.2272649.
[18] W. Sung and B. J. Baliga, “Monolithically Integrated 4H-SiC MOSFET and JBS Diode (JBSFET) Using a Single Ohmic/Schottky Process Scheme,” IEEE Electron Device Lett., vol. 37, no. 12, pp. 1605–1608, 2016. DOI: 10.1109/LED.2016.2618720.
[19] C. Han et al., “An Improved ICP Etching for Mesa-Terminated 4H-SiC p-i-n Diodes,” IEEE Trans. Electron Devices, vol. 62, no. 4, pp. 1223–1229, 2015. DOI: 10.1109/TED.2015.2403615.