Details

Title

Stability and robustness analysis of discrete-time fractional-piecewise-constant-order PID controller

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

5

Affiliation

Oziablo, Piotr : Bialystok University of Technology, ul. Wiejska 45A, 15-351 Bialystok, Poland ; Mozyrska, Dorota : Bialystok University of Technology, ul. Wiejska 45A, 15-351 Bialystok, Poland ; Wyrwas, Malgorzata : Bialystok University of Technology, ul. Wiejska 45A, 15-351 Bialystok, Poland

Authors

Keywords

stability analysis ; fractional calculus ; control systems ; digital control

Divisions of PAS

Nauki Techniczne

Coverage

e137937

Bibliography

  1.  R. Hilfer, Applications of Fractional Calculus in Physics, Singapore: World Scientific Publishing Company, 2000.
  2.  R. Almeida, N.R.O. Bastos, and M.T.T. Monteiro, “A fractional Malthusian growth model with variable order using an optimization approach”, Stat. Optim. Inf. Comput. vol. 6, no. 1, pp.  4–11, 2018.
  3.  R. Caponetto, G. Dongola, G. Fortuna, and I. Petras, Fractional Order Systems: Modeling and Control Applications, World Scientific, Singapore, 2010.
  4.  I. Podlubny, “Fractional-order systems and PIlDm controllers”, IEEE Trans. Autom. Control, vol. 44, no. 1, pp. 208–214, 1999.
  5.  D. Xue and Y.Q. Chen, “A Comparative Introduction of Four Fractional Order Controllers”, Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R. China, 2002, pp. 3228–3235.
  6.  Y.Q. Chen, “Ubiquitous fractional order controls?”, IFAC Proc. Vol., vol. 39, no. 11, pp. 481–492, 2006.
  7.  C.A Monje, Y. Chen, B.M. Vinagre, and V. Feliubatlle, Fractional-Order Systems and Fractional-Order Controllers, Springer Science & Business Media, 2010.
  8.  I. Petras, “Tuning and implementation methods for fractionalorder controllers”, Fract. Calc. Appl. Anal., vol. 15, no. 2, pp. 282–303, 2012.
  9.  S. Debarma, L.C. Saikia, and N. Sinha, “Automatic generation control using two degree of freedom fractional order PID controller”, Int. J. Electr. Power Energy Syst., vol. 58, pp. 120–129, 2014.
  10.  F. Padula and A. Visioli, “Set-point weight tuning rules for fractional order PID controllers”, Asian J. Control, vol. 15, no. 3, pp. 678–690, 2013.
  11.  A. Tepljakov, E. Petlenkov, and J. Belikov, “A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications”, Proceedings of the 31st Chinese Control Conference, 2012, pp. 4698–4703.
  12.  P. Shah and S. Agashe, “Review of fractional PID controller”, Mechatronics, vol. 38, pp. 29–41, 2016.
  13.  A. Veloni and N. Miridakis, Digital Control Systems, Pearson Education Limited, 2017.
  14.  P. Oziablo, D. Mozyrska, and M. Wyrwas, “A Digital PID Controller Based on Grünwald-Letnikov Fractional-, Variable-Order Operator”, 24th International Conference on Methods and Models in Automation and Robotics (MMAR), 2019, pp. 460–465.
  15.  D. Mozyrska, P. Oziablo, and M.Wyrwas, “Fractional-, variableorder PID controller implementation based on two discretetime fractional order operators”, 7th International Conference on Control, Mechatronics and Automation (ICCMA), 2019, pp. 26–32.
  16.  P. Oziablo, D. Mozyrska, and M. Wyrwas, “Discrete-Time Fractional, Variable-Order PID Controller for a Plant with Delay”, Entropy, vol. 22, no. 7, p. 771, 2020.
  17.  P. Ostalczyk, “Variable-, fractional-order discrete PID controllers”, 17th International Conference on Methods and Models in Automation and Robotics (MMAR), 2012, pp. 534–539.
  18.  D. Sierociuk, W. Malesza, and M. Macias, “On a new definition of fractional variable-order derivative”, Proc. of the 14th International Carpathian Control Conference (ICCC), 2013, pp.  340–345.
  19.  D. Sierociuk, and W. Malesza, “Fractional variable order antiwindup control strategy”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 4, pp. 427–432, 2018.
  20.  D. Mozyrska and P. Ostalczyk, “Generalized Fractional-Order Discrete-Time Integrator”, Complexity, vol. 2017, p.  3452409, 2017.
  21.  D. Mozyrska, and M. Wyrwas, “Systems with fractional variable-order difference operator of convolution type and its stability”, Elektronika i Elektrotechnika, vol. 24, no. 5, pp. 69‒73, 2018.
  22.  F. Haugen, PID Control, Tapir Academic Press, 2004.
  23.  R.C. Dorf and R.H. Bishop, Modern Control Systems, CRC Press, Taylor & Francis Group, 2018.
  24.  O. Mayr, The origins in feedback control, MIT Press, Cambridge, Mass, 1970.
  25.  F. Haugen, TechTeach: Discrete-time signals and systems, 2005.
  26.  K. Chen, R. Tang, and Ch. Li, “Phase-constrained fractional order PI controller for second-order-plus dead time systems”, Trans. Inst. Meas. Control, vol. 39, no. 8, pp. 1225–1235, 2016.
  27.  M. Micev, M. Calasan, and D. Oliva, “Fractional Order PID Controller Design for an AVR System Using Chaotic Yellow Saddle Goatfish Algorithm”, Mathematics, vol. 8, no. 7, p. 1182, 2020.
  28.  MathWorks. [Online]. Available: https://www.mathworks.com/help/control/ref/stepinfo.html. [Accessed Aug. 28, 2020].
  29.  G.F. Franklin, J.D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Prentice Hall, 2004.

Date

26.07.02021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.137937
×