Details

Title

Wind tunnel model tests of wind action on the chimney with grid-type curtain structure

Journal title

Archives of Civil Engineering

Yearbook

2021

Volume

vol. 67

Issue

No 3

Affiliation

Flaga, Andrzej : Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Jana Pawła II 37/3a, 31-864 Cracow ; Kłaput, Renata : Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Jana Pawła II 37/3a, 31-864 Cracow ; Flaga, Łukasz : Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Jana Pawła II 37/3a, 31-864 Cracow ; Krajewski, Piotr : Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Jana Pawła II 37/3a, 31-864 Cracow

Authors

Keywords

model test ; chimney with grid-type curtain ; wind action ; wind pressure determination

Divisions of PAS

Nauki Techniczne

Coverage

177-196

Publisher

WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES

Bibliography



[1] Zdravkovich M.M., “Review and classification oof various aerodynamic and hydrodynamic means for suppressing vortex shedding”. J.Wind Eng. Ind. Aerodyn., 7(2): pp. 145-189, 1981.
[2] Arunachalam, S., & Lakshmanan, N. (2015). “Across-wind response of tall circular chimneys to vortex shedding”. Journal of Wind Engineering and Industrial Aerodynamics, 145, pp. 187–195, https://doi.org/10.1016/j.jweia.2015.06.005.
[3] Wang, L., & Fan, X. (2019). “Failure cases of high chimneys: A review”. Engineering Failure Analysis, 105, pp. 1107–1117, https://doi.org/10.1016/j.engfailanal.2019.07.032.
[4] Vickery, B. J., & Basu, R. I., “The response of reinforced concrete chimneys to vortex shedding”. Engineering Structures, 6(4), pp. 324–333, 1974
[5] Flaga A., “Wind vortex-induced excitation and vibration of slender structures-single structure of circular cross-section normal to flow”. Monograph No. 202. Cracow University of Technology, Cracow 1996.
[6] Lipecki, T., & Flaga, A. (2013). “Vortex excitation model. Part I. mathematical description and numerical implementation”. Wind and Structures, 16(5), pp. 457–476.
[7] Lipecki, T., & Flaga, A. (2013). “Vortex excitation model. Part II. application to real structures and validation”. Wind and Structures, 16(5), pp. 477–490, https://doi.org/10.12989/was.2013.16.5.477.
[8] Brownjohn, J. M. W., Carden, E. P., Goddard, C. R., & Oudin, G. (2010). “Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney”. Journal of Wind Engineering and Industrial Aerodynamics, 98(3), pp. 169–179, https://doi.org/10.1016/j.jweia.2009.10.013.
[9] Christensen, R. M., Nielsen, M. G., & Støttrup-Andersen, U. (2017). “Effective vibration dampers for masts, towers and chimneys”. Steel Construction, 10(3), pp. 234–240, https://doi.org/10.1002/stco.201710032.
[10] Belver, A. V., Ibán, A. L., & Lavín Martín, C. E. (2012). “Coupling between structural and fluid dynamic problems applied to vortex shedding in a 90m steel chimney”. Journal of Wind Engineering and Industrial Aerodynamics, 100(1), pp. 30–37. .
[11] Verboom, G. K., & van Koten, H. (2010). “Vortex excitation: Three design rules tested on 13 industrial chimneys”. Journal of Wind Engineering and Industrial Aerodynamics, 98(3), pp. 145–154, https://doi.org/10.1016/j.jweia.2009.10.008.
[12] Kawecki, J., & Żurański, J. A. (2007). ”Cross-wind vibrations of steel chimneys – A new case history”. Journal of Wind Engineering and Industrial Aerodynamics, 95(9–11), pp. 1166–1175.
[13] Lupi, F., Höffer, R., & Niemann, H.-J. (2021). “Aerodynamic damping in vortex resonance from aeroelastic wind tunnel tests on a stack”. Journal of Wind Engineering and Industrial Aerodynamics, 208, pp. 104–438.
[14] Lupi, F., Niemann, H.-J., & Höffer, R. (2017). “A novel spectral method for cross-wind vibrations: Application to 27 full-scale chimneys”. Journal of Wind Engineering and Industrial Aerodynamics, 171, pp. 353–365, https://doi.org/10.1016/j.jweia.2017.10.014.
[15] Rahman, S., Jain, A. K., Bharti, S. D., & Datta, T. K. (2020). “Comparison of international wind codes for across wind response of concrete chimneys”. Journal of Wind Engineering and Industrial Aerodynamics, 207, pp. 104–401.
[16] Ruscheweyh H., “Dynamische Windwirkung an Bauwerken. Band 2: Praktische Anwendungen. Bauverlag”. Wiesbaden und Berlin, 1982.
[17] Blevins R.D., “Flow-induced vibration. Second edition”. Van Nostrand Reinhold, New York 1990.
[18] Flaga A., “Wind engineering – fundamentals and applications” (in Polish), Arkady, Warsaw (2008).

Date

2021.09.08

Type

Article

Identifier

DOI: 10.24425/ace.2021.138050
×