Details
Title
Effect of heat transfer correlation on wet cylinder liner temperature distribution when converting an old engine into a turbocharged engineJournal title
Archives of ThermodynamicsYearbook
2021Volume
vol. 42Issue
No 3Affiliation
Trung, Kien Nguyen : Phenikaa University, Faculty of Vehicle and Energy Engineering, Yen Nghia Ward, Ha-Dong District, Hanoi 12116, Vietnam ; Trung, Kien Nguyen : Phenikaa Research and Technology Institute, A&A Green Phoenix Group JSC, 167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, VietnamAuthors
Keywords
Heat transfer correlation ; Turbocharged engine ; Cylinder liner distribution ; SuperchargingDivisions of PAS
Nauki TechniczneCoverage
159-172Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesBibliography
[1] Caton J.A.: An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. Wiley, 2016.[2] Kurowski M.: Heat transfer coefficient measurements on curved surfaces. Arch. Thermodyn. 42(2021), 2, 155–170.
[3] Nusselt W.: Der Warmeubergang in der Verbrennungskrafmaschine. V.D.I. Forschungsheft 264(1923).
[4] Annand W.J.D.: Heat transfer in the cylinders of reciprocating internal combustion engines. P.I. Mech. Eng. 177(1963), 36, 973–996.
[5] Eichelberg G.: Some new investigations on old combustion engine problems. Engineering 148(1939), 463–466, 547–550.
[6] Woschni G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Transactions 76(1967), 670931, 3065–3083.
[7] Hohenberg G.F.: Advanced approaches for heat transfer calculations. SAE Tech. Pap. 790825(1979).
[8] Finol C.A., Robinson K.: Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. P.I. Mech. Eng. D-J. Aut. 220(2006), 12, 1765–1781.
[9] Finol C.A., Robinson K.: Thermal modelling of modern diesel engines: proposal of a new heat transfer coefficient correlation. P.I. Mech. Eng. D-J. Aut. 225(2011), 11, 1544–1560.
[10] Parra C.A.F.: Heat transfer investigations in a modern diesel engine. PhD thesis, Univ. Bath, Bath 2008.
[11] Hiereth H., Prenninger P.: Charging the Internal Combustion Engine. Springer, Wien New York 2007.
[12] Pan M., Qian W., Wei H., Feng D., Pan J.: Effects on performance and emissions of gasoline compression ignition engine over a wide range of internal exhaust gas recirculation rates under lean conditions. Fuel 265(2020), 116881.
[13] Trung K.N.: A Study for determination of the pressure ratio of the V12 diesel engine based on the heat flow density to cooling water. In: Advances in Engineering Research and Application. (K.U. Sattler., D.C. Nguyen, N.P. Vu, B.T. Long., H. Puta, Eds.), Proc. ICERA 2020, Lecture Notes in Networks and Systems, Vol. 178, Springer, 2021, 64–74.
[14] Thompson M.K., Thompson J.M.: ANSYS Mechanical APDL for Finite Element Analysis. Butterworth-Heinemann, 2017.
[15] Trung K.N.: The temperature distribution of the wet cylinder liner of V-12 engine according to calculation and experiment. J. Therm. Eng. 7(2021), 2 (Spec. iss.),
[16] Heywood J.B.: Internal Combustion Engine Fundamentals (2nd Edn.). McGraw- Hill Education, 2018.
Date
2021.11.09Type
ArticleIdentifier
DOI: 10.24425/ather.2021.138114Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China