Details

Title

Acoustic Emission as a Method for Analyzing Changes and Detecting Damage in Composite Materials During Loading

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 3

Affiliation

Panasiuk, Katarzyna : Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences, Gdynia, Poland ; Dudzik, Krzysztof : Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland ; Hajdukiewicz, Grzegorz : Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences, Gdynia, Poland

Authors

Keywords

multilayered composite ; recycling ; mechanical properties ; acoustic emission

Divisions of PAS

Nauki Techniczne

Coverage

399-407

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Bibliography

1. Aggelis D., Barkoula N.-M., Matikas T., Paipetis A. (2012), Acoustic structural health monitoring of composite materials: Damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics, Composities Science and Technology, 72(10): 1127–1133, doi: 10.1016/ j.compscitech.2011.10.011.
2. Al-Jumaili S.K., Pearson M.R., Holford K.M., Eaton M.J., Pullin R. (2016), Acoustic emission source location in complex structures using full automatic delta T mapping technique, Mechanical Systems and Signal Processing, 72–73: 513–524, doi: 10.1016/j.ymssp.2015.11.026.
3. Caesarendra W., Kosasih B., Tieu A.K., Zhu H., Moodie C.A.S., Zhu Q. (2016), Acoustic emissionbased condition monitoring methods: Review and application for low speed slew bearing, Mechanical Systems and Signal Processing, 72–73: 134–159, doi: 10.1016/j.ymssp.2015.10.020.
4. De Rosa I., Santulli C., Sarasini F. (2009), Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: A literature review, Composites Part A: Applied Science and Manufacturing, 40(9): 1456–1469, doi: 10.1016/j.composite sa.2009.04.030.
5. Dudzik K., Labuda W. (2020), The possibility of applying acoustic emission and dynamometric methods for monitoring the turning process, Materials (Basel), 13(13): 2926, doi: 10.3390/ma13132926.
6. Gołaski L. (1994), Acoustic emission in composite materials [in Polish: Emisja akustyczna w materiałach kompozytowych], [in]: Małecki J., Ranachowski Z. [Eds], Acoustic emission. Sources. Methods. Usage [in Polish: Emisja akustyczna. Zródła. Metody. Zastosowania], Warszawa: PASCAL.
7. Gutkin R., Green C.J., Vangrattanachai S., Pinho S.T., Robinson P., Curtis P.T. (2011), On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses, Mechanical Systems and Signal Processing, 25(4): 1393– 1407, doi: 10.1016/j.ymssp.2010.11.014.
8. Hoła J. (1999), Acoustic-emission investigation of failure of high strength concrete, Archives of Acoustics, 24(2): 233–244.
9. Juskowiak E., Małdachowska A., Panek M. (2013), Acoustic emission of composite sandwich panels during three-point bending [in Polish: Emisja akustyczna kompozytowych płyt przekładkowych podczas trójpunktowego zginania], Przetwórstwo Tworzyw, 19(4): 351– 354.
10. Kurzydłowski K., Boczkowska A.S.J., Konopka K., Spychalski W. (2005), Monitoring of failures in the composites by non-destructive methods [in Polish: Monitorowanie uszkodzen w kompozytach metodami nieniszczacymi], Polymers, 50(4): 255–261.
11. Kyzioł L., Panasiuk K., Barcikowski M., Hajdukiewicz G. (2020), The influence of manufacturing technology on the properties of layered composites with polyester–glass recyclate additive, Progress in Rubber, Plastics and Recycling Technology, 36(1): 18–30, doi: 10.1177/1477760619895003.
12. Marec A., Thomas J., Guerjouma R.E. (2008), Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data, Mechanical Systems and Signal Processing, 22(6): 1441–1448, doi: 10.1016/j.ymssp.2007.11.029.
13. McCrory J.P. et al. (2005), Damage classification in carbon fibre composites using acoustic emission: A comparison of three techniques, Composites: Part B, 68: 424–430, doi: 10.1016/j.compositesb.2014.08.046.
14. Mohammadi R., Najafabadi M.A., Saeedifar M., Yousefi J., Minak G. (2017), Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites, Composites Part B: Engineering, 118: 427–435, doi: 10.1016/j.compositesb.2016.09.101.
15. Monti A., El Mahi A., Jendli Z., Guillaumat L. (2016), Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission, Composites Part A: Applied Science and Manufacturing, 90: 100–110, doi: 10.1016/j.compositesa.2016.07.002.
16. Nikbakht M., Yousefi J., Hosseini-Toudeshky H., Minak G. (2017), Delamination evaluation of composite laminates with different interface fiber orientations using acoustic emission features and micro visualization, Composites Part B: Engineering, 113: 185–196, doi: 10.1016/j.compositesb.2016.11.047.
17. Panasiuk K., Hajdukiewicz G. (2017), Production of composites with added waste polyester-glass with their initial mechanical properties, Scientific Journals of the Maritime University of Szczecin, 52(124): 30–36, doi: 10.17402/242.
18. Panasiuk K., Kyzioł L., Dudzik K. (2019), The use of acoustic emission signal (AE) in mechanical tests, Przeglad Elektrotechniczny, 95(11): 8–11, doi: 10.15199/48.2019.11.03.
19. PN-EN ISO 527-4:2000, Plastics – Determination of mechanical properties under static stretching – Test conditions for isotropic and orthotropic fiber-reinforced plastic composites.
20. PN-EN 1330-9:2017-09, Non-destructive testing – Terminology – Part 9: Terms used in acoustic emission testing.
21. PN-EN 13554: 2011E, Non-destructive testing – Acoustic emission – General rules. 22. PN-EN 15857: 2010E, Non-destructive testing – Acoustic emission – Testing of fiber-reinforced polymers – Specified methodology and general evaluation criteria.
23. Ranachowski Z., Józwiak-Niedzwiedzka D., Brandt A., Debowski T. (2012), Application of acoustic emission method to determine critical stress in fibre reinforced mortar beams, Archives of Acoustics, 37(3): 261–268, doi: 10.2478/v10168-012-0034-3.
24. Saeedifar M., Fotouhi M., Ahmadi Najafabadi M., Hosseini Toudeshky H., Minak G. (2016), Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission, Composites Part B: Engineering, 85: 113–122, doi: 10.1016/j.compositesb.2015.09.037.
25. Shafiq B., Quispitupa A., Just F., Banos M. (2005), Sandwich Structures 7: Advancing with Sandwich Structures and Materials: Proceedings of the 7th International Conference on Sandwich Structures, Aalborg University, Aalborg, Denmark, August 29– 31, 2005, Springer Science & Business Media, doi: 10.1007/1-4020-3848-8.
26. Xiao Y., Qiao W., Fukuda H., Hatta H. (2016), The effect of embedded devices on structural integrity of composite laminates, Composite Structures, 153: 21–29, doi: 10.1016/j.compstruct.2016.06.007.
27. Xingmin Z., Xiong Y.I. (2006), Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission, Composite Science and Technology, 66(3–4): 444–449, doi: 10.1016/j.compsci tech.2005.07.013.
28. Yu Y.-H., Cho J.-H., Kweon J.-H., Kim D.-H. (2006), A study on the failure detection of composite materials using an acoustic emission, Composite Structures, 75(1–4): 163–169, doi: 10.1016/j.compstruct.2006.04.070.
29. Zaki A., Chai H., Aggelis D., Alver N. (2015), Non-destructive evaluation for corrosion monitoring in concrete: a review and capability of acoustic emission technique, Sensors, 15(8): 19069–19101, doi: 10.3390/s150819069.
30. Zakłady Chemiczne „Organika Sarzyna” S.A., http://www.krisko.lublin.pl/chemia/zywice-poliestrowepolimal/konstrukcyjne-ogolnego-stosowania-polimal-1094-awtp-1/polimal-1094-awtp-1/polimal-1094-awtp-1-a-5-kg-1.html (access: 20.07.2020).

Date

2021.09.21

Type

Article

Identifier

DOI: 10.24425/aoa.2021.138133
×