Details
Title
Effect of part build orientations and sliding wear factors on tribological characteristics of FDM processed partsJournal title
Archive of Mechanical EngineeringYearbook
2021Volume
vol. 68Issue
No 3Affiliation
Alamro, Turki : Department of Mechanical Engineering, Umm Al-Qura University, Makkah City, Saudi Arabia. ; Yunus, Mohammed : Department of Mechanical Engineering, Umm Al-Qura University, Makkah City, Saudi Arabia. ; Alfattani, Rami : Department of Mechanical Engineering, Umm Al-Qura University, Makkah City, Saudi Arabia. ; Alnaser, Ibrahim A. : Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia.Authors
Keywords
FDM components ; ABS polymer ; tribological properties ; part developing orientations ; sliding wear ; frictionDivisions of PAS
Nauki TechniczneCoverage
321-336Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] D. Ahn, J.-H. Kweon, S. Kwon, J. Song, and S. Lee. Representation of surface roughness in fused deposition modeling. Journal of Materials Processing Technology, 209(15-16):5593–5600, 2009. doi: 10.1016/j.jmatprotec.2009.05.016.[2] C.K. Chua, S.H. Teh, and R.K.L. Gay. Rapid prototyping versus virtual prototyping in product design and manufacturing. The International Journal of Advanced Manufacturing Technology, 15(8):597–603, 1999. doi: 10.1007/s001700050107.
[3] W. Zeng, F. Lin, T. Shi, R. Zhang, Y. Nian, J. Ruan, and T Zhou. Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images. Rapid Prototyping Journal, 15(5):280–284, 2008. doi: 10.1108/13552540810907947.
[4] S.H. Choi and H.H. Cheung. Multi-material virtual prototyping for product development and biomedical engineering. Computers in Industry, 58(5):438–452, 2007. doi: 10.1016/j.compind.2006.09.002.
[5] E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui. Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture, 46(12-13):1459–1468, 2006. doi: 10.1016/j.ijmachtools.2005.09.005.
[6] N. Oxman. Variable property rapid prototyping. Virtual and Physical Prototyping, 6(1):3–31, 2011. doi: 10.1080/17452759.2011.558588.
[7] A. Bellini, L. Shor, and S.I. Guceri. New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal, 11(4):214–220, 2005. doi: 10.1108/13552540510612901.
[8] K.D. Dearn, T.J. Hoskins, D.G. Petrov, S.C. Reynolds, and R. Banks. Applications of dry film lubricants for polymer gears. Wear, 298-299:99–108, 2013. doi: 10.1016/j.wear.2012.11.003.
[9] S.E. Franklin. Wear experiments with selected engineering polymers and polymer composites under dry reciprocating sliding conditions. Wear, 251(1-12):1591–1598, 2001. doi: 10.1016/S0043-1648(01)00795-5.
[10] P.V. Vasconcelos, F.J. Lino, A.M. Baptista, and R.J. Neto. Tribological behaviour of epoxy based composites for rapid tooling. Wear, 260(1-2):30–39, 2006. doi: 10.1016/j.wear.2004.12.030.
[11] B.-B. Jia, T.-S. Li, X.-J. Liu, and P.-H. Cong. Tribological behaviors of several polymer–polymer sliding combinations under dry friction and oil-lubricated conditions. Wear, 262(11-12):1353–1359, 2007. doi: 10.1016/j.wear.2007.01.011.
[12] A. Equbal, A.K. Sood, V. Toppo, R.K. Ohdar, and S.S. Mahapatra. Prediction and analysis of sliding wear performance of fused deposition modelling-processed ABS plastic parts. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224(12):1261–1271, 2010. doi: 10.1243/13506501JET835.
[13] A. Pereira, J. Pérez, J. Diéguez, G. Peláez, and J. Ares. Design and manufacture of casting pattern plates by rapid tooling. Archives of Material Science, 29(1-2):63–67, 2008.
[14] Q. Liu, M.C. Leu, and S.M. Schmitt. Rapid prototyping in dentistry: technology and application. The International Journal of Advanced Manufacturing Technology, 29(3):317–335, 2006. doi: 10.1007/s00170-005-2523-2.
[15] T. Brajlih, B. Valentan, J. Balic, and I. Drstvensek. Speed and accuracy evaluation of additive manufacturing machines. Rapid Prototyping Journal, 17(1):64–75, 2011. doi: 10.1108/13552541111098644.
[16] Y. Yan, S. Li, R. Zhang, F. Lin, R. Wu, Q. Lu, Z. Xiong, and X. Wang. Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends. Tsinghua Science and Technology, 14(S1):1–12, 2009. doi: 10.1016/S1007-0214(09)70059-8.
[17] P. Rochus, J.-Y. Plesseria, M.Van Elsen, J.-P. Kruth, R. Carrus, and T. Dormal. New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation. Acta Astronautica, 61(1-6):352–359, 2007. doi: 10.1016/j.actaastro.2007.01.004.
[18] Z. Rymuza, Z. Kusznierewicz, T. Solarski, M. Kwacz, S.A. Chizhik, and A.V. Goldade. Static friction and adhesion in polymer–polymer microbearings. Wear, 238(1):56–69, 2000. doi: 10.1016/S0043-1648(99)00341-5.
[19] M.M. Hanon, Y. Alshammas, and L. Zsidai. Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite. The International Journal of Advanced Manufacturing Technology, 108:553–570, 2020. doi: 10.1007/s00170-020-05391-x.
[20] M.N.M. Norani M.I.H.C. Abdullah, M.F.B. Abdollah, H. Amiruddin, F.R. Ramli, and N. Tamaldin. Tribological analysis of a 3D-printed internal triangular flip ABS pin during running-in stage. Jurnal Tribologi, 27:42–56, 2020.
[21] G.S. Balan, V.S. Kumar, S. Rajaram, and M. Ravichandran. Investigation on water absorption and wear characteristics of waste plastics and seashell powder reinforced polymer composite. Jurnal Tribologi, 27:57–70, 2020.
[22] M. Yunus and M.S. Alsoufi. Effect of raster inclinations and part positions on mechanical properties, surface roughness and manufacturing price of printed parts produced by fused deposition method. Journal of Mechanical Engineering and Sciences, 14(4):7416–7423, 2020. doi: 10.15282/jmes.14.4.2020.10.0584.
[23] M. Yunus and M.S. Alsoufi. Experimental investigations into the mechanical, tribological, and corrosion properties of hybrid polymer matrix composites comprising ceramic reinforcement for biomedical applications. International Journal of Biomaterials, 2018:ID 9283291, 2018. doi: 10.1155/2018/9283291.
[24] P.K. Gurrala and S.P. Regalla. Friction and wear behavior of ABS polymer parts made by fused deposition modeling (FDM). Technology Letters, 1(12):13–17, 2014.