Details
Title
Dynamic splitting tensile performance of new and old concrete after high temperature treatmentJournal title
Archives of Civil EngineeringYearbook
2021Volume
vol. 67Issue
No 4Affiliation
Cao, Hai : Huangshan University, School of Civil Engineering and Architecture, HuangShan 245041,ChinaAuthors
Keywords
new and old concrete ; split Hopkinson pressure bar (SHPB) ; dynamic splitting tensile performance ; impact velocity ; temperatureDivisions of PAS
Nauki TechniczneCoverage
79-89Publisher
WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCESBibliography
[1] Z.Y. Bu, W.Y. Wu, “Inter shear transfer of unbounded prestressing precast segmental bridge column dry joints”, Engineering Structures, vol. 154, no. 1, pp. 52–65, 2018, DOI: 10.1016/j.engstruct.2017.10.048.[2] Zhi-fang Zhao et al., “Experimental study on adhesive tensile performance of young on old concrete”, Journal of Building Stucture, vol. 22, no.2, pp. 51–56, 2001.
[3] Zhi-fang Zhao, Guo-fan Zhao, and Cheng-kui Huang, “Research on adhesive bending behavior of young on old concrete”, China Civil Engineering Journal, vol. 33, no. 2, pp. 67–72, 2000.
[4] Li-na Jin et al., “Experimental study of shear performance of new-to-old concrete interface”, Journal of Experimental Menchanics, vol. 29, no. 5, pp. 611–619, 2014.
[5] B.Wang et al., “Evaluation of tensile bonding strength between UHTCC repair materials and concrete substrate”, Construction and Building Materials, vol. 112, pp. 595–606, 2016, DOI: 10.1016/j.conbuildmat.2016.02.149.
[6] A.M. Diab, A.E.M.A. Elmoaty, and M.R.T. Eldin, “Slant shear bond strength between self compacting concrete and old concrete”, Construction and Building Materials, vol. 130, pp. 73–82, 2016, DOI: 10.1016/ j.conbuildmat.2016.11.023.
[7] H.H. Hussein, “Interfacial properties of ultrahigh-performance concrete and high-strength concrete bridge connections”, Journal of Materials in Civil Engineering, vol. 28, no.5, pp. 1943–5533, 2016, DOI: 10.1061/(ASCE) MT.1943-5533.0001456.
[8] A.T. Bassam et al., “Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay”, Construction and Building Materials, vol. 36, pp. 538–548, November 2012, DOI: 10.1016/j.conbuildmat.2012.06.013.
[9] M.A. Carbonell Munoz, “Bond performance between ultrahigh-performance concrete and normal-strength concrete”, Journal of Materials in Civil Engineering, vol. 26, no. 8, pp. 1943–5533, 2014, DOI: 10.1061/(ASCE) MT.1943-5533.0000890.
[10] Ju-hui Zhang and Yue Li, “Research summary on factors about influencing strength of interfacebetween new and old concrete”, Concrete, vol. 10, pp. 156–162, 2017.
[11] Ma Qin-Yong, et al, “Experiment and analysis on adhesive bending performance of post pouring concrete on precast concrete”, Journal of Materials Science and Engineering, vol. 36, no. 1, pp. 47–50, 2018.
[12] Jin-yu Xu et al, “Impact mechanical properties of concrete at and after exposure to high temperature”, Journal of Building Materials, vol. 16, no. 1, pp. 1–5, 2013.
[13] Bao-jun Pang et al., “Experimental study on impact properties of reactive powder concrete using SHPB after exposure in high temperature”, Journal of Building Materials, vol. 15, no. 3, pp. 317–321, 2012, DOI: 10.3969/j.issn. 1007-9629.2012.03.005.
[14] Li-wen Wang et al, “Dynamic behavior for steel-fiber reinforced reactive powder concrete after exposure in high temperature”, Journal of Building Materials, vol. 13, no. 5, pp. 620–625, 2010.
[15] Yu-tao Wang et al., “Static and dynamic mechanical properties of concrete after high temperature treatment”, Journal of vibration and shock, vol. 33, no. 20, pp. 16–19, 2014.
[16] Yuan-ming He et al, “Impact tests on dynamic behavior of concrete at elevated temperatures”, Engineering mechanics, vol. 29, no. 9, pp. 200–208, 2012.
[17] Zhi-fang Zhao, Yue-hai Yu, and Guo-fan Zhao, “Measurement method of the interfacial roughness of young on old concrete”, Building Structure, vol. 30, no. 1, pp. 26–29, 2000.
[18] M. Pankow, C. Attard, and A.M. Waas, “Specimen size and shape effect in split hopkinson pressure bar testing”, The Journal of Strain Analysis for Engineering Design, vol. 44, no. 8, pp. 689–698, 2009.
[19] Hai Cao, Qin-yong Ma, “Dynamic splitting tensile performance of post pouring concrete adhered on precast concrete”, Journal of Building Materials, vol. 21, no. 1, pp. 150–152, 2018.
[20] Li-li Wang, “Foundation of stress waves”, 2nd ed, Beijing, National Defense Industry Press, pp. 5–64, 2010.