Szczegóły

Tytuł artykułu

Multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on visual cues

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences Technical Sciences

Rocznik

2021

Wolumin

69

Numer

6

Afiliacje

Jadhav, Nagesh : MIT ADT University, Pune, Maharashtra, 412201, India ; Sugandhi, Rekha : MIT ADT University, Pune, Maharashtra, 412201, India

Autorzy

Słowa kluczowe

deep learning ; convolution neural network ; emotion recognition ; transfer learning ; late fusion

Wydział PAN

Nauki Techniczne

Zakres

e138819

Bibliografia

  1.  W. Łosiak and J. Siedlecka, “Recognition of facial expressions of emotions in schizophrenia,” Pol. Psychol. Bull., vol. 44, no. 2, pp. 232– 238, 2013, doi: 10.2478/ppb-2013-0026.
  2.  I.M. Revina and W.R.S. Emmanuel, “A Survey on human face expression recognition techniques,” J. King Saud Univ. Comput. Inf. Sci., vol. 33, no. 6, pp. 619–628, 2021, doi: 10.1016/j.jksuci.2018.09.002.
  3.  I.J. Goodfellow et al., “Challenges in representation learning: A report on three machine learning contests,” Neural Networks, vol. 64, pp. 59‒63, 2015, doi: 10.1016/j.neunet.2014.09.005.
  4.  M. Mohammadpour, H. Khaliliardali, S.M.R. Hashemi, and M.M. AlyanNezhadi. “Facial emotion recognition using deep convolution- al networks,” in Proc. IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, 2017, pp. 0017–0021.
  5.  D.V. Sang, N. Van Dat, and D.P. Thuan, “Facial expression recognition using deep convolutional neural networks,” in Proc. 9th Interna- tional Conference on Knowledge and Systems Engineering (KSE), Hue, 2017, pp. 130‒135.
  6.  C. Pramerdorfer and M. Kampel, “Facial expression recognition using convolutional neural networks: state of the art,” ArXiv, abs/1612.02903.
  7.  J. Yan et al., “Multi-cue fusion for emotion recognition in the wild,” Neurocomputing, vol. 309, pp.  27–35, 2018, doi: 10.1016/j.neu- com.2018.03.068.
  8.  T.A. Rashid, “Convolutional neural networks based method for improving facial expression recognition,” in Advances in Intelligent Systems and Computing, Intelligent Systems Technologies, and Applications 2016. ISTA 2016, J. C. Rodriguez, S. Mitra, S. Thampi, E. S. El-Alfy (Eds)., vol. 530, 2016, Springer, Cham.
  9.  A. Ruiz-Garcia, M. Elshaw, A. Altahhan, and V. Palade, “Deep learning for emotion recognition in faces,” in Artificial Neural Net- works and Machine Learning – ICANN 2016, A.E.P. Villa, P. Masulli, and A.J.P. Rivero (Eds.), vol. 9887, 2016, Switzerland: Springer Verlag, pp. 38‒46, doi: 10.1007/978-3-319-44781-0_5.
  10.  M. Shamim Hossain and Ghulam Muhammad, “Emotion recognition using deep learning approach from audio-visual emotional big data,” Information Fusion, vol. 49, pp. 69‒78, 2019, doi: 10.1016/j.inffus.2018.09.008.
  11.  A.S. Vyas, H.B. Prajapati, and V.K. Dabhi, “Survey on face expression recognition using CNN,” in Proc. 5th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2019, pp. 102‒106.
  12.  M.M. Taghi Zadeh, M. Imani, and B. Majid, “Fast facial emotion recognition using convolutional neural networks and Gabor filters,” in Proc. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, 2019, pp. 577–581.
  13.  A. Renda, M. Barsacchi, A. Bechini, and F. Marcelloni, “Comparing ensemble strategies for deep learning: An application to facial ex- pression recognition,” Expert Syst. Appl., vol. 136, pp. 1‒11, 2019, doi: 10.1016/j.eswa.2019.06.025.
  14.  H. Ding, S. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a deep face recognition net for expression recognition,” in Proc. 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), Washington, USA, 2017, pp. 118‒126. doi: 10.1109/FG.2017.23.
  15.  J. Li et al., “Facial Expression Recognition by Transfer Learning for Small Datasets,” in Security with Intelligent Computing and Big-data Services. SICBS 2018. Advances in Intelligent Systems and Computing, C. N. Yang, S. L. Peng, L. Jain, (Eds.), vol. 895, Springer, Cham, 2018.
  16.  Y. Wang, C. Wang, L. Luo, and Z. Zhou, “Image Classification Based on transfer Learning of Convolutional neural network,” in Proc. Chinese Control Conference (CCC), Guangzhou, China, 2019, pp.  7506‒7510.
  17.  I. Lee, H. Jung, C. H. Ahn, J. Seo, J. Kim, and O. Kwon, “Real-time personalized facial expression recognition system based on deep learning,” in Proc. 2016 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2016, pp. 267‒268.
  18.  J. Chen, X. Liu, P. Tu, and A. Aragones, “Person-specific expression recognition with transfer learning,” in Proc 19th IEEE International Conference on Image Processing, Orlando, USA, 2012, pp. 2621‒2624.
  19.  Y. Fan, J.C.K. Lam, and V.O.K. Li, “Multi-Region Ensemble Convolutional Neural Network for Facial Expression Recognition”, arXiv, 2018, cs. CV, https://arxiv.org/abs/1807.10575v1.
  20.  K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016, pp.  770‒778.
  21.  J. Chmielińska and J. Jakubowski, “Detection of driver fatigue symptoms using transfer learning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 869‒874, 2018, doi: 10.24425/bpas.2018.125934.
  22.  E. Lukasik et al., “Recognition of handwritten Latin characters with diacritics using CNN,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, 2021, article number: e136210, doi: 10.24425/bpasts.2020.136210.
  23.  H. Zhang, A. Jolfaei, and M. Alazab, “A Face Emotion Recognition Method Using Convolutional Neural Network and Image Edge Computing,” IEEE Access, vol. 7, pp. 159081‒159089, 2019, doi: 10.1109/ACCESS.2019.2949741.
  24.  HackerEarth, “Transfer Learning Introduction Tutorials and Notes: Machine Learning,” [Online]. Available: https://www.hackerearth. com/practice/machine-learning/transfer-learning/transfer-learning-intro/tutorial/
  25.  S. Minaee, M. Minaei, and A. Abdolrashidi, “Deep-emotion: Facial expression recognition using attentional convolutional network,” Sensors, vol. 21, no. 9, p. 3046, 2021, doi: 10.3390/s21093046.
  26.  M.J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, “Coding facial expressions with Gabor wavelets,” in Proc. 3rd IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 200‒205, doi: 10.1109/AFGR.1998.670949.
  27.  P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition – Workshops, San Francisco, USA, 2010, pp.  94‒101, doi: 10.1109/CVPRW.2010.5543262.
  28.  M.F.H. Siddiqui and A.Y. Javaid, “A multimodal facial emotion recognition framework through the fusion of speech with visible and infrared images,” Multimodal Technol. Interact., vol. 4, no. 3, p. 46, 2020, doi: 10.3390/mti4030046.
  29.  M.S. Zia, M. Hussain, and M.A.A Jaffar, “Novel spontaneous facial expression recognition using dynamically weighted majority voting based ensemble classifier,” Multimed. Tools Appl., vol. 77, pp. 25537–25567, 2018.
  30.  D. Lundqvist, A. Flykt, and A. Öhman, “The Karolinska Directed Emotional Faces – KDEF,” CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, 1998.

Data

15.09.2021

Typ

Article

Identyfikator

DOI: 10.24425/bpasts.2021.138819 ; ISSN 2300-1917
×