Details

Title

A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications

Journal title

Opto-Electronics Review

Yearbook

2021

Volume

29

Issue

4

Affiliation

Adhikari, Rammani : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India ; Adhikari, Rammani : School of Engineering, Pokhara University, Pokhara Metropolitan City 30, Kaski, Nepal ; Chauhan, Diksha : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India ; Mola, Genene T. : School of Chemistry and Physics, University of Kwazulu Natal, Scottsville, South Africa ; Dwivedi, Ram P. : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India

Authors

Keywords

coupled resonator ; Fano resonance ; finite element method ; plasmonic nanosensor ; sensitivity ; waveguide

Divisions of PAS

Nauki Techniczne

Coverage

148-166

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. De Tommasi, E. et al. Frontiers of light manipulation in natural, metallic, and dielectric nanostructures. Riv. del Nuovo Cim. 44, 1–68 (2021). https://doi.org/10.1007/s40766-021-00015-w
  2. Maier, S. Surface plasmon polaritons at metal /insulator interfaces. in Plasmonics: Fundamentals and Applications:Chapter 2, 1–2 (Springer, New York, 2007). https://doi.org/10.1007/0-387-37825-1_2
  3. Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D. Appl. Phys. 45, 113001 (2012).span> https://doi.org/10.1088/0022-3727/45/11/113001
  4. Naik, G. V, Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076
  5. Luo, & Yan, L. Surface plasmon polaritons and its applications. IEEE Photon. J. 4, 590–595 (2012). https://doi.org/10.1109/JPHOT.2012.2189436.
  6. Saleh, E. A. & Teich, M. C. Fundamentals of Photonics. 1114–1115 (2nd ed.) (Wiley press, 2007). https://doi.org/10.1063/1.2809878
  7. Gramotnev, K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010). https://doi.org/10.1038/nphoton.2009.282
  8. Kinsey, N., Ferrera, M., Shalaev, V. M. & Boltasseva, A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. Opt. Soc. Am. B 32, 121–142 (2015). https://doi.org/10.1364/JOSAB.32.000121
  9. Amoosoltani, N., Yasrebi, N., Farmani, A. & Zarifkar, A. A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation IEEE Sens. J. 20, 9097–9104 (2020). https://doi.org/10.1109/JSEN.2020.2987319
  10. Han, Z. & Bozhevolnyi, S. I. Radiation guiding with surface plasmon polaritons. Reports Prog. Phys. 76, 016402 (2013). https://doi.org/10.1088/0034-4885/76/1/016402
  11. Lu, H., Wang, G. X. & Liu, X.M. Manipulation of light in MIM plasmonic waveguide systems. Chin. Sci. Bull. 58, 3607–3616 (2013). https://doi.org/10.1007/s11434-013-5989-6
  12. Onbasli, M. C. & Okyay, A. K. Nanoantenna couplers for metal-insulator-metal waveguide interconnects. Proc. SPIE 7757, 77573R (2010). https://doi.org/10.1117/12.876177
  13. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017). https://doi.org/10.1038/nphoton.2017.142
  14. Luk’Yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010). https://doi.org/10.1038/nmat2810
  15. Wang, J. et al. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Express 21, 2236–2244 (2013). https://doi.org/10.1364/OE.21.002236
  16. Lovera, A., Gallinet, B., Nordlander, P. & Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013). https://doi.org/10.1021/nn401175j
  17. Fan, J. A. et al. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett. 10, 4680–4685 (2010) . https://doi.org/10.1021/nl1029732
  18. Kazanskiy, N. L., Khonina, S. N. & Butt, M. A. Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: A brief Phys. E Low Dimens. Syst. Nanostruct. 117, 113798 (2020). https://doi.org/10.1016/j.physe.2019.113798
  19. Verellen, N. et al. Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods. Nano Lett. 14, 2322–2329 (2014). https://doi.org/10.1021/nl404670x
  20. Huang, Y., Min, C., Dastmalchi, P. & Veronis, G. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt. Express 23, 14922 (2015) . https://doi.org/10.1364/OE.23.014922
  21. Luo, S., Li, B., Xiong, D., Zuo, D. & Wang, X. A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12, 223–227 (2017). https://doi.org/10.1007/s11468-016-0253-y
  22. Rakhshani, M. R. & Mansouri-Birjandi, M. A. A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin Photonics Nanostruct. 32, 28–34 (2018). https://doi.org/10.1016/j.photonics.2018.08.002
  23. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 66, 1038–1043 (2019). https:/doi.org/10.1080/09500340.2019.1601272
  24. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 202, 163655 (2020). https://doi.org/10.1016/j.ijleo.2019.163655
  25. Economou,  N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969). https://doi.org/10.1103/PhysRev.182.539
  26. Yang, & Lu, Z. Subwavelength plasmonic waveguides and plasmonic materials. Int. J. Opt. 2012 (2012). https://doi.org/10.1155/2012/258013
  27. Han, Z. & Bozhevolnyi, S. I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011). https://doi.org/10.1364/OE.19.003251
  28. Zhan, S. et al. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J. Phys. D. Appl. Phys. 47, (2014).https:/doi.org/10.1088/0022-3727/47/20/205101
  29. Piao, X., Yu, S., Koo, S., Lee, K. & Park, N. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express 19, 10907–10912 (2011). https://doi.org/10.1364/OE.19.010907
  30. Fu, Y. H., Zhang, J. B., Yu, Y. F. & Luk’yanchuk, B. Generating and manipulating higher order Fano resonances in dual-disk. ACS Nano 6, 5130–5137 (2012). https://doi.org/10.1021/nn3007898
  31. Fang, J., Zhang, M., Zhang, F. & Yu, H. Plasmonic sensor based on Fano resonance. Guangdian Gongcheng/Opto-Electron. Eng. 44, 221–225 (2017). https://doi.org/10.3969/j.issn.1003-501X.2017.02.012
  32. Yu, Y. et al. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photonics Rev. 9, 241–247 (2015). https://doi.org/10.1002/lpor.201400207
  33. Chen, Z. & Yu, L. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. 6, 1–8 (2014). https://doi.org/ 1109/JPHOT.2014.2368779
  34. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010). https://doi.org/10.1103/RevModPhys.82.2257
  35. Chen, Z. et al. A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system. IEEE Photon. Technol. Lett. 27, 1695–1698 (2015). https://doi.org/ 1109/LPT.2015.2437850
  36. Wei, W., Yan, X., Shen, B. & Zhang, X. Plasmon-induced transparency in an asymmetric bowtie structure. Nanoscale Res. Lett. 14, 246 (2019). https://doi.org/10.1186/s11671-019-3081-0
  37. Song, H., Singh, R., Cong, L. & Yang, H. Engineering the Fano resonance and electromagnetically induced transparency in near-field coupled bright and dark J. Phys. D. Appl. Phys. 48, 035104 (2015). https://doi.org/10.1088/0022-3727/48/3/035104
  38. Yu, S., Piao, X., Hong, J. & Park, N. Progress toward high-Q perfect absorption : A Fano anti-laser. Phys. Rev. A 92, 011802R (2015). https://doi.org/10.1103/PhysRevA.92.011802
  39. Yan, X. et al. High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring Plasmonics 12, 1449–1455 (2016). https://doi.org/10.1007/s11468-016-0405-0
  40. Chen, J., Gan, F., Wang, Y. & Li, G. Plasmonic sensing and modulation based on Fano resonances. Adv. Opt. Mater. 6, 1701152 (2018). https://doi.org/10.1002/adom.201701152
  41. Deng, Y., Cao, G. & Yang, H. Tunable Fano resonance and high-sensitivity sensor with high figure of merit in plasmonic coupled cavities. Photonics Nanostruct. 28, 45–51 (2018). https://doi.org/10.1016/j.photonics.2017.11.008
  42. Hayashi, S., Nesterenko, D. V. & Sekkat, Z. Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl. Express 8, 022201 (2015). https://doi.org/10.7567/apex.8.022201
  43. Heuck, M., Kristensen, P. T., Elesin, Y. & Mørk, J. Improved switching using Fano resonances in photonic crystal structures. Opt. Lett. 38, 2466 (2013). https://doi.org/10.1364/OL.38.002466
  44. Chen, Z. et al. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 320, 6–11 (2014). https://doi.org/10.1016/j.optcom.2013.12.079
  45. Qi, J. et al. Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt. Express 22, 14688–14695 (2014). https://doi.org/10.1364/OE.22.014688
  46. Chen, Z.-Q. et al. Fano resonance based on multimode interference in symmetric plasmonic structures and its applications in plasmonic nanosensors. Chin. Lett. 30, 057301 (2013). https://doi.org/10.1088/0256-307x/30/5/057301
  47. Gu, P., Birch, D. J. S. & Chen, Y. Dye-doped polystyrene-coated gold nanorods: Towards wavelength tuneable SPASER. Methods Appl. Fluoresc. 2, 024004 (2014). https://doi.org/10.1088/2050-6120/2/2/024004
  48. Zafar, R. & Salim, M. Enhanced Figure of Merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15, 6313–6317 (2015). https://doi.org/10.1109/JSEN.2015.2455534
  49. Zhang, Y. et al. Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt. Commun. 370, 203–208 (2016). https://doi.org/10.1016/j.optcom.2016.03.001
  50. Zhang, Y. et al. Ultra-high Sensitivity plasmonic nanosensor based on multiple Fano resonance in the MDM side-coupled cavities. Plasmonics 12, 1099– 1105 (2017). https://doi.org/10.1007/s11468-016-0363-6
  51. Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Transmission line and equivalent circuit models for plasmonic waveguide components. EEE J. Sel. Top. Quantum 14, 1462–1472 (2008). https://doi.org/10.1109/JSTQE.2008.924431
  52. Han, Z., Van, V., Herman, W. N. & Ho, P.-T. Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt. Express 17, 12678– 12684 (2009). https://doi.org/10.1364/OE.17.012678
  53. Li, Q., Wang, T., Su, Y., Yan, M. & Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367 (2010). https://doi.org/10.1364/OE.18.008367
  54. Achanta, V.G. Surface waves at metal-dielectric interfaces: Material science perspective. Rev. Phys. 5, 100041 (2020). https://doi.org/10.1016/j.revip.2020.100041
  55. Niu, L., Zhang, J. B., Fu, Y. H., Kulkarni, S. & Luky`anchuk, B. Fano resonance in dual-disk ring plasmonic nanostructures. Opt. Express 19, 22974–22981 (2011). https://doi.org/10.1364/OE.19.022974
  56. Kolwas, K. & Derkachova, A. Impact of the Interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 10, 1411 (2020). https://doi.org/10.3390/nano10071411
  57. Thomas, A. Plasmonics. in Narrow Plasmon Resonances in Hybrid Systems 7–27 (Springer, 2018). https://doi.org/10.1007/978-3-319-97526-9
  58. Noah, N. M. Design and synthesis of nanostructured materials for sensor applications. J. Nanomater. 2020, 8855321 (2020). https://doi.org/10.1155/2020/8855321
  59. Chen, F. & Yao, D. Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt. Commun. 369, 72–78 (2016). https://doi.org/10.1016/j.optcom.2016.02.024
  60. Zhang, Y. et al. High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth Appl. Phys. A 125, 13 (2019). https://doi.org/10.1007/s00339-018-2283-0
  61. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019). https://doi.org/10.1016/j.rinp.2019.102420
  62. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011). https://doi.org/10.1364/OME.1.001090
  63. West, R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010). https://doi.org/10.1002/lpor.200900055
  64. Deng, Y. et al. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci. Rep. 7, 10639 (2017). https://doi.org/10.1038/s41598-017-10626-1
  65. Zhang, Z. et al. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18, 116 (2018). https://doi.org/10.3390/s18010116
  66. Chauhan, D., Adhikari, R., Saini, R. K., Chang, S. H. & Dwivedi, R. P. Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 223, 165545 (2020). https://doi.org/10.1016/j.ijleo.2020.165545
  67. Zhang, Z., Luo, L., Xue, C., Zhang, W. & Yan, S. Fano resonance based on metal-insulator-metal waveguide-coupled double rectan-gular cavities for plasmonic Sensors 16, 22–24 (2016). https://doi.org/10.3390/s16050642
  68. Chen, Z., Cui, L., Song, X., Yu, L. & Xiao, J. High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt. Commun. 340, 1–4 (2015). https://doi.org/10.1016/j.optcom.2014.11.081
  69. Tian, J., Wei, G., Yang, R. & Pei, W. Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik 208, 164136 (2020). https://doi.org/10.1016/j.ijleo.2019.164136
  70. Chou Chao, C.-T., Chou Chau, Y.-F & Chiang, H.-P. Multiple Fano resonance modes in an ultra-compact plasmonic waveguide-cavity system for sensing applications. Results 27, 104527 (2021). https://doi.org/10.1016/j.rinp.2021.104527
  71. Rakhshani, M. R. Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics 39, 100768 (2020). https://doi.org/10.1016/j.photonics.2020.100768
  72. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019). https://doi.org/10.1016/j.rinp.2019.102420
  73. Ren, X., Ren, K. & Cai, Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl. Opt. 56, H1–H9 (2017). https://doi.org/10.1364/AO.56.0000H1
  74. Tang, Y. et al. Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17, 784 (2017). https://doi.org/10.3390/s17040784
  75. Yang, X., Hua, E., Su, H., Guo, J. & Yan, S. A nanostructure with defect based on Fano resonance for application on refractive-index and temperature sensing. Sensors 20, 4125 (2020). https://doi.org/10.3390/s20154125
  76. Chen, Y. et al. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator. Opt. Laser Technol. 101, 273–278 (2018). https://doi.org/10.1016/j.optlastec.2017.11.022
  77. Binfeng, Y., Ruohu, Z., Guohua, H. & Yiping, C. Ultra-sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 11, 1157–1162 (2016). https://doi.org/10.1007/s11468-015-0154-5
  78. Zhang, Q., Huang, X.-G., Lin, X.-S., Tao, J. & Jin, X.-P. A subwavelength coupler-type MIM optical filter. Opt. Express 17, 7549–7554(2009). https://doi.org/10.1364/OE.17.007549
  79. Rakhshani, M. R. Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing. Opt. Quantum 51, 287 (2019). https://doi.org/10.1007/s11082-019-2007-5
  80. Chen, F., Zhang, H., Sun, L., Li, J. & Yu, C. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 116, 293–299 (2019). https://doi.org/10.1016/j.optlastec.2019.03.044
  81. He, Y. et al. Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator. Opt. Quantum Electron. 52, 391 (2020). https://doi.org/10.1007/s11082-020-02513-3
  82. Dionne, J. et al. A. Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010). https://doi.org/10.1109/JSTQE.2009.2034983
  83. Zhan, S. et al. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci. Rep. 6, 22428 (2016). https://doi.org/10.1038/srep22428
  84. Guo, Z. et al. Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors 18, 1348 (2018). https://doi.org/10.3390/s18051348
  85. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Multiple Fano resonances in a coupled plasmonic resonator system. J. Appl. Phys. 126, 083102 (2019). https://doi.org/10.1063/1.5105358
  86. Chen, Z., Song, X., Duan, G., Wang, L. & Yu, L. Multiple Fano resonances control in MIM side-coupled cavities systems. IEEE Photonics J. 7, 1–10 (2015). https://doi.org/10.1109/JPHOT.2015.2433012
  87. Zhang, X. et al. Refractive Index Sensor based on Fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sens. 8, 367– 374 (2018). https://doi.org/10.1007/s13320-018-0509-6
  88. Yang, X. et al. Fano resonance in a MIM waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 19, 4972 (2019). https://doi.org/10.3390/s19224972
  89. Wang, W.-D., Zheng, L. & Qi, J.-G. High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric nanocylinder dimer metamaterials. Appl. Express 12, 075002 (2019). https://doi.org/10.7567/1882-0786/ab206a
  90. Špačková, B., Wrobel, P., Bocková, M. & Homola, J. Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104, 2380–2408 (2016). https://doi.org/10.1109/JPROC.2016.2624340
  91. Li, S. et al. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt. Express 25, 3525–3533 (2017). https://doi.org/10.1364/OE.25.003525
  92. Butt, M. A., Kazanskiy, N. L. & Khonina, S. N. Nanodots decorated asymmetric metal-insulator-metal waveguide resonator structure based on Fano resonances for refractive index sensing Laser Phys. 30, (2020). https://doi.org/10.1088/1555-6611/ab9090
  93. Chen, Z., Cao, X. & Song, X. Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11, 307– 313 (2016). https://doi.org/10.1007/s11468-015-0035-y
  94. Wang, Y., Li, S., Zhang, Y. & Yu, L. Independently formed multiple Fano resonances for ultra-high sensitivity plasmonic nanosensor. Plasmonics 13, 107– 113 (2018). https://doi.org/10.1007/s11468-016-0489-6
  95. Chen, J. et al. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 482, 126563 (2021). https://doi.org/10.1016/j.optcom.2020.126563
  96. Chen, J. et al. Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8, 1627–1631 (2013). https://doi.org/10.1007/s11468-013-9580-4
  97. Wen, K. et al. Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10, 27–32 (2015). https://doi.org/10.1007/s11468-014-9772-6
  98. Yang, J. et al. Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor. Plasmonics 12, 1665–1672 (2017). https://doi.org/10.1007/s11468-016-0432-x
  99. Wen, K., Chen, L., Zhou, J., Lei, L. & Fang, Y. A Plasmonic chip-scale refractive index sensor design based on multiple Fano reso-nances. Sensors 18, 3181 (2018). https://doi.org/10.3390/s18103181
  100. Liu, Y. et al. Theoretical design of plasmonic refractive index sensor based on the fixed band detection. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019). https://doi.org/10.1109/JSTQE.2018.2827661
  101. Qiao, L., Zhang, G., Wang, Z., Fan, G. & Yan, Y. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019). https://doi.org/10.1016/j.optcom.2018.09.055
  102. Xiao, G. et al. High sensitivity plasmonic sensor based on Fano resonance with inverted u-shaped resonator. Sensors 21, 1–12 (2021). https://doi.org/10.3390/s21041164
  103. Li, C. et al. Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor. IEEE Photonics J. 9, 1– 9 (2017). https://doi.org/10.1109/JPHOT.2017.2763781
  104. Shi, X. et al. Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt. Commun. 427, 326–330 (2018). https://doi.org/10.1016/j.optcom.2018.06.042
  105. Chen, Z. et al. Sensing characteristics based on Fano resonance in rectangular ring waveguide. Opt. Commun. 356, 373–377 (2015). https://doi.org/10.1016/j.optcom.2015.08.020
  106. Wang, M., Zhang, M., Wang, Y., Zhao, R. & Yan, S. Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19, 791 (2019). https://doi.org/10.3390/s19040791
  107. Yu, S., Zhao, T., Yu, J. & Pan, D. Tuning multiple fano resonances for on-chip sensors in a plasmonic system. Sensors 19, 1559 (2019). https://doi.org/10.3390/s19071559
  108. Rahmatiyar, M., Danaie, M. & Afsahi, M. Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt. Quantum 52, 153 (2020). https://doi.org/10.1007/s11082-020-02266-z
  109. Li, Z. et al. Manipulation of multiple Fano resonances based on a novel chip-scale MDM structure. IEEE Access 8, 32914–32921 (2020). https://doi.org/10.1109/ACCESS.2020.2973417
  110. Fang, Y. et al. Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photon. J. 11, 1–8 (2019). https://doi.org/1109/JPHOT.2019.2914483
  111. Wang, Q., Ouyang, Z., Sun, Y., Lin, M. & Liu, Q. Linearly tunable Fano resonance modes in a plasmonic nanostructure with a waveguide loaded with two rectangular cavities coupled by a circular Nanomaterials 9, 678 (2019). https://doi.org/10.3390/nano9050678
  112. Su, H. et al. Sensing features of the Fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity. Appl. Sci. 10, 5096 (2020). https://doi.org/10.3390/app10155096
  113. Wang, S., Zhao, T., Yu, S. & Ma, W. High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator IEEE Access 8, 40599–40611 (2020). https://doi.org/10.1109/ACCESS.2020.2974491
  114. Li, Z. et al. Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system. IEEE Access 7, 59369–59375 (2019). https://doi.org/10.1109/ACCESS.2019.2914466
  115. El Haffar, R., Farkhsi, A. & Mahboub, O. Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A 126, 486 (2020). https://doi.org/10.1007/s00339-020-03660-w
  116. Hassan, M. F., Hasan, M. M., Ahmed, M. I. & Sagor, R.H. Numerical investigation of a plasmonic refractive index sensor based on rectangular MIM topology. in 2020 International Seminar on Intelligent Technology and its Applications ISITIA 2020, 77–82 (IEEE, 2020). https://doi.org/10.1109/ISITIA49792.2020.9163755
  117. Wang, Y. et al. Design of sub wavelength-grating-coupled Fano resonance sensor in mid-infrared. Plasmonics 16, 463–469 (2021). https://doi.org/10.1007/s11468-020-01313-5
  118. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Double Fano resonances based on different mechanisms in a MIM plasmonic system. Photonics Nanostruct. 36, 100714 (2019). https://doi.org/10.1016/j.photonics.2019.100714
  119. Chen, Z., Chen, J., Yu, L. & Xiao, J. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator. Plasmonics 10, 131–137 (2015). https://doi.org/10.1007/s11468-014-9786-0
  120. Pang, S. et al. The sensing characteristics based on electro-magnetically-induced transparency-like response in double-sided stub and a nano-disk waveguide Mod. Phys. Lett. B 31, 1–9 (2017). https://doi.org/10.1142/S0217984917501019
  121. Zhang, Z. D. et al. Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12, 1007–1013 (2017). https://doi.org/10.1007/s11468-016-0352-9
  122. Akhavan, A., Ghafoorifard, H., Abdolhosseini, S. & Habibiyan, H. Metal-insulator-metal waveguide-coupled asymmetric resonators for sensing and slow light IET Optoelectron. 12, 220–227 (2018). https://doi.org/10.1049/iet-opt.2018.0028
  123. Shi, H. et al. A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator. Micromachines 12, 495 (2021). https://doi.org/10.3390/mi12050495
  124. Meng, Z.-M. & Qin, F. Realizing prominent Fano resonances in metal-insulator-metal plasmonic Bragg gratings side-coupled with plasmonic nanocavities. Plasmonics 13, 2329–2336 (2018). https://doi.org/10.1007/s11468-018-0756-9
  125. Tathfif, I., Rashid, K.S., Yaseer, A. A. & Sagor, R.H. Alternative material titanium nitride based refractive index sensor embedded with defects: An emerging solution in sensing Results Phys. 29, 104795 (2021). https://doi.org/10.1016/j.rinp.2021.104795
  126. Li, Q. et al. Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials. Adv. Mater. Technol. 5, 1–7 (2020). https://doi.org/10.1002/admt.201900840
  127. Ge, J. et al. Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance. Opt. Express 28, 31781–31795 (2020). https://doi.org/10.1364/OE.405348

Date

29.03.2022

Type

Reviews

Identifier

DOI: 10.24425/opelre.2021.139601
×