Details

Title

Theoretical analysis of LNG regasifier supplementing gas turbine cycle

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 4

Affiliation

Szczygieł, Ireneusz : Silesian University of Technology Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland ; Rutczyk, Bartłomiej Paweł : Silesian University of Technology Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland

Authors

Keywords

LNG ; Gas-turbine ; Cryogenic exergy ; Exergy recovery

Divisions of PAS

Nauki Techniczne

Coverage

47-67

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] IGU IGU. World LNG report. International Gas Union (IGU), Barcelona 2017.
[2] Khan M.S., Lee M.: Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints. Energy 49(2013), 146–155.
[3] Romero Gómez M., Ferreiro Garcia R., Romero Gómez J., Carbia Carril J.: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process. Renew. Sust. Energ. Rev. 38(2014), 781–795.
[4] Szargut J., Szczygieł I.: Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy 34(2009), 7, 827–837.
[5] Maertens J.: Design of Rankine cycles for power generation from evaporating LNG. Int. J. Refrig. 9(1986), 3, 137–143.
[6] Qiang W., Yanzhong L., Jiang W.: Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source. Appl. Therm. Eng. 24(2004), 4, 539–548.
[7] Kim C.W., Chang S.D., Ro S.T.: Analysis of the power cycle utilizing the cold energy of LNG. Int. J. Energ. Res. 19(1995), 9, 741–749.
[8] Chiu C.-H., Cords M., Kimmel Ohishi M., Kikkawa Y.: Efficient power recovery in LNG regasification plants. In: Proc. 11AIChE Spring Meeting and 7th Global Cong. on Process Safety, Chicago, March 13-17, 2011.
[9] Griepentrog H., Sackarendt P.: Vaporization of LNG with closed-cycle gas turbines. In: Proc. ASME 1976 Int. Gas Turbine and Fluids Engineering Conf., New Orleans. March 21-25, 1976. V01AT01A038.
[10] Krey G.: Utilization of the cold by LNG vaporization with closed-cycle gas turbine. ASME J. Eng. Power. 102(1980), 225–230.
[11] Arsalis A., Alexandrou A.N.: Effective Utilization of Liquefied Natural Gas for Distributed Generation. Nova Science, 2015.
[12] Zhang H., Shao S., Zhao H., Feng Z.: Thermodynamic analysis of a SCO2 partflow cycle combined with an organic Rankine cycle with liquefied natural gas as heat sink. In: Proc. ASME Turbo Expo 2014: Turbine Technical Conf. Expo., Düsseldorf, June 16–20, 2014, V03BT36A012.
[13] Subramanian R., Berger M., Tunçer B.: Energy recovery from LNG regasification for space cooling-technical and economic feasibility study for Singapore. In Proc. 2017 Asian Conf. on Energy, Power and Transportation Electrification (ACEPT), Oct. 24–26, 2017.
[14] Wang J., Dai Y., Sun Z., Ma S.: Parametric analysis of a new CCHP system utilizing liquefied natural gas (LNG). In: Proc. ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow. June 14–18, 2010, 77–86.
[15] Mehrpooya M.: Conceptual design and energy analysis of novel integrated liquefied natural gas and fuel cell electrochemical power plant processes. Energy 111(2016), 468–483.
[16] Kowalska M., Pazdzior M.: LNG as an alternative fuel for food industry. Przemysł Spozywczy 71(2017) (in Polish).
[17] Szczygieł I., Stanek W., Szargut J.: Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity. Energy 105(2016), 25–31.
[18] Bulinski Z., Szczygieł I., Krysinski T., Stanek W., Czarnowska L., Gładysz P., Kabaj A.: Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy. Energy 141(2017), 2559–2571.
[19] Szczygieł I. Bulinski Z.: Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the prof. Szargut’s impact. Energy 165(2018), 999–1008.
[20] Stanek W., Simla T., Rutczyk B., Kabaj A., Bulinski Z., Szczygieł I., Czarnowska L., Krysinski T., Gładysz P.: Thermo-ecological assessment of Stirling engine with regenerator fed with cryogenic exergy of liquid natural gas (LNG). Energy 185(2019), 1045–1053.
[21] Kaneko K., Ohtani K., Tsujikawa Y., Fujii S.: Utilization of the cryogenic exergy of LNG by a mirror gas-turbine. Appl. Energ. 79(2004), 4, 355–369.
[22] Bisio G., Tagliafico L.: On the recovery of LNG physical exergy by means of a simple cycle or a complex system. Exergy, Int. J. 2(2002), 1, 34–50.
[23] Morosuk T. Tsatsaronis G.: Comparative evaluation of LNG–based cogeneration systems using advanced exergetic analysis. Energy 36(2011), 6, 3771–3778.
[24] Morosuk T., Tsatsaronis G., Boyano A., Gantiva C.: Advanced exergy-based analyses applied to a system including LNG regasification and electricity generation. Int. J. Energ. Environ. Eng. 3(2012), 1.
[25] Salimpour M.R., Zahedi M.A.: Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas. Heat Mass Transfer 48(2012), 8, 1309–1317.
[26] Angelino G., Invernizzi C.M.: The role of real gas Brayton cycles for the use of liquid natural gas physical exergy. Appl. Therm. Eng. 31(2011), 5, 827–833.
[27] Açıkkalp E., Aras HA., Hepbaslic A.: Advanced exergy analysis of a trigeneration system with a diesel–gas engine operating in a refrigerator plant building. Energ. Buildings 80(2014), 268–275.
[28] Cheng D.Y., Nelson A.L.C.: The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. In: Proc. ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, June 3–6, 2002, GT 2002; 421–428.
[29] Szargut J.: Technical Thermodynamics. Wydawn. Politechniki Slaskiej, Gliwice 2011 (in Polish).

Date

2022.01.17

Type

Article

Identifier

DOI: 10.24425/ather.2021.139650

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×