Details

Title

Hybrid nano improved phase change material for latent thermal energy storage system: Numerical study

Journal title

Archive of Mechanical Engineering

Yearbook

2022

Volume

vol. 69

Issue

No 1

Affiliation

Benlekkam, Mohamed Lamine : Department of Science and Technology, University of Tissemsilt, Tissemsilt, Algeria ; Benlekkam, Mohamed Lamine : Laboratory of Smart Structure, University of Ain Temouchent, Ain Temouchent, Algeria ; Nehari, Driss : Laboratory of Hydrology and Applied Environment, University of Ain Temouchent, Algeria

Authors

Keywords

phase change material (PCM) latent heat storage ; melting and solidification ; thermal energy storage ; hybrid nano-particles ; LHTESS

Divisions of PAS

Nauki Techniczne

Coverage

77-98

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. Fernández. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3):1675–1695, 2011. doi: 10.1016/j.rser.2010.11.018.
[2] K. Nedjem, M. Teggar, K.A.R. Ismail, and D. Nehari. Numerical investigation of charging and discharging processes of a shell and tube nano-enhanced latent thermal storage unit. Journal of Thermal Science and Engineering Applications, 12(2):021021, 2020. doi: 10.1115/1.4046062.
[3] K. Hosseinzadeh, M.A. Efrani Moghaddam, A. Asadi, A.R. Mogharrebi, and D.D. Ganji. Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation. Renewable Energy, 154:497–507, 2020. doi: 10.1016/j.renene.2020.03.054.
[4] M.M. Joybari, S. Seddegh, X. Wang, and F. Haghighat. Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renewable Energy,} 140:234–244, 2019. doi: 10.1016/j.renene.2019.03.037.
[5] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, and A.T. Mohammad. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied Thermal Engineering, 53(1):147–156, 2013. doi: 10.1016/j.applthermaleng.2013.01.011.
[6] X. Yang, Z. Lu, Q. Bai, Q. Zhang, L. Jin, and J. Yan. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 202:558–570, 2017. doi: 10.1016/j.apenergy.2017.05.007.
[7] C. Zhao, M. Opolot, M. Liu, F. Bruno, S. Mancin, and K. Hooman. Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams. International Journal of Heat and Mass Transfer, 150:119348, 2020. doi: 10.1016/j.ijheatmasstransfer.2020.119348.
[8] M. Longeon, A. Soupart, J.-F. Fourmigué, A. Bruch, and P. Marty. Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 112:175–184, 2013. doi: 10.1016/j.apenergy.2013.06.007.
[9] S. Seddegh, S.S.M. Tehrani, X. Wang, F. Cao, and R.A. Taylor. Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Applied Thermal Engineering, 130:1349–1362, 2018. doi: 10.1016/j.applthermaleng.2017.11.130.
[10] I. Al Siyabi, S. Khanna, T. Mallick, and S. Sundaram. An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system. Journal of Energy Storage, 23:57–68, 2019. doi: 10.1016/j.est.2019.03.010.
[11] S. Sebti, S. Khalilarya, I. Mirzaee, S. Hosseinizadeh, S. Kashani, and M. Abdollahzadeh. A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM). World Applied Sciences Journal, 13(1):9–15, 2011.
[12] N. Dhaidan, J. Khodadadi, T.A. Al-Hattab, and S. Al-Mashat. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. International Journal of Heat and Mass Transfer, 67:455–468, 2013. doi: 10.1016/j.ijheatmasstransfer.2013.08.002.
[13] Q. Ren, F. Meng, and P. Guo. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale. International Journal of Heat and Mass Transfer, 121:1214–1228, 2018. doi: 10.1016/j.ijheatmasstransfer.2018.01.046.
[14] C. Nie, J. Liu, and S. Deng. Effect of geometric parameter and nanoparticles on PCM melting in a vertical shell-tube system. Applied Thermal Engineering, 184:116290, 2020. doi: 10.1016/j.applthermaleng.2020.116290.
[15] M. Gorzin, M.J. Hosseini, M. Rahimi, and R. Bahrampoury. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger. Journal of Energy Storage, 22:88–97, 2019. doi: 10.1016/j.est.2018.12.023.
[16] M. Khatibi, R. Nemati-Farouji, A. Taheri, A. Kazemian, T. Ma, and H. Niazmand. Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. Journal of Energy Storage, 33:102055, 2020. doi: 10.1016/j.est.2020.102055.
[17] P. Manoj Kumar, K. Mylsamy, and P.T. Saravanakumar. Experimental investigations on thermal properties of nano-SiO 2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(19):2420–2433, 2020. doi: 10.1080/15567036.2019.1607942.
[18] P. Manoj Kumar, K. Mylsamy, K. Alagar, and K. Sudhakar. Investigations on an evacuated tube solar water heater using hybrid-nano based organic phase change material. International Journal of Green Energy, 17(13):872–883, 2020. doi: 10.1080/15435075.2020.1809426.
[19] S. Ebadi, S.H. Tasnim, A.A. Aliabadi, and S. Mahmud. Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification. Energy Conversion and Management, 166:241–259, 2018. doi: 10.1016/j.enconman.2018.04.016.
[20] J.M. Mahdi and E.C. Nsofor. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Applied Energy, 211:975–986, 2018. doi: 10.1016/j.apenergy.2017.11.082.
[21] M.J. Hosseini, A.A. Ranjbar, K. Sedighi, and M. Rahimi. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. International Communications in Heat and Mass Transfer, 39(9):1416–1424, 2012. doi: 10.1016/j.icheatmasstransfer.2012.07.028.
[22] S. Harikrishnan, K. Deepak, and S. Kalaiselvam. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. Journal of Thermal Analysis and Calorimetry, 115:1563–1571, 2014. doi: 10.1007/s10973-013-3472-x.
[23] ANSYS. Fluent. (2017), Copyright 2017 SAS IP, Inc.
[24] Z. Khan, Z.A. Khan, and P. Sewell. Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application. International Journal of Heat and Mass Transfer, 144:118619, 2019. doi: 10.1016/j.ijheatmasstransfer.2019.118619.
[25] J.C. Maxwell. Electricity and Magnetism. Clarendon Press, Oxford, 1873.
[26] S. Ghadikolaei, K. Hosseinzadeh, and D.D. Ganji. Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe 3O 4-Ag) dependent on shape factor. Journal of Molecular Liquids, 262:376–388, 2018. doi: 10.1016/j.molliq.2018.04.094.
[27] S.S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh, and D.D. Ganji. Investigation on thermophysical properties of TiO 2–Cu/H 2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology, 322:428–438, 2017. doi: 10.1016/j.powtec.2017.09.006.
[28] A.D. Brent, V.R. Voller, and K. Reid. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, 13(3):297–318, 1988. doi: 10.1080/10407788808913615.
[29] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. CRC Press, 1980.
[30] M.L. Benlekkam, D. Nehari, and N. Cheriet. Numerical investigation of latent heat thermal energy storage system. Recueil de Mécanique, 3:229-235, 2018. doi: 10.5281/zenodo.1490505.
[31] M.A. Kibria, M.R. Anisur, M.H. Mahfuz, R. Saidur, and I.H.S.C. Metselaar. Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. International Communications in Heat and Mass Transfer, 53:71–78, 2014. doi: 10.1016/j.icheatmasstransfer.2014.02.023.
[32] M.J. Hosseini, M. Rahimi, and R. Bahrampoury. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. International Communications in Heat and Mass Transfer, 50:128–136, 2014. doi: 10.1016/j.icheatmasstransfer.2013.11.008.

Date

21.01.2022

Type

Article

Identifier

DOI: 10.24425/ame.2022.140410
×